Is a Deep Learning Based Segmentation Model Trained on planning CTs Transferable for Segmentation of Organs at Risk in Replanning CTs?

被引:0
|
作者
Du, J. [1 ,2 ]
Shen, P. [1 ,3 ]
Huang, S. [1 ]
Yang, X. [1 ]
机构
[1] Sun Yat Sen Univ, Canc Ctr, State Key Lab Oncol South China, Collaborat Innovat Ctr Canc Med,Guangdong Key Lab, Guangzhou 510060, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510000, Peoples R China
[3] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3081
引用
收藏
页码:E495 / E495
页数:1
相关论文
共 50 条
  • [1] Deep-learning approach to automate the segmentation of aorta in non-contrast CTs
    Ma, Qixiang
    Lucas, Antoine
    Hammami, Houda
    Shu, Huazhong
    Kaladji, Adrien
    Haigron, Pascal
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (02)
  • [2] A Deep Learning Method for Auto-Segmentation of Cardiac Substructures on Non-Contrast Planning CTs in the RADCOMP Trial
    Lin, H.
    Zou, W.
    Kenworthy, W.
    Bosch, W. R.
    Lu, H.
    Li, T.
    Teo, K.
    Bekelman, J. E.
    Ky, B.
    Dong, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E310 - E310
  • [3] Using planning CTs to enhance CNN-based bladder segmentation on Cone Beam CT
    Brion, Eliott
    Leger, Jean
    Javaid, Umair
    Lee, John
    De Vleeschouwer, Christophe
    Macq, Benoit
    MEDICAL IMAGING 2019: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2019, 10951
  • [4] Soft Tissue Sarcoma Contouring based on Planning CTs using Deep Learning
    Lang, D. M.
    Peeken, J. C.
    Asadpour, R.
    Spraker, M. B.
    Nyflot, M. J.
    Combs, S. E.
    Wilkens, J. J.
    Bartzsch, S.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (SUPPL 1) : S33 - S33
  • [5] Clinical evaluation of a deep learning based auto-segmentation model for intracranial organs at risk
    Poel, Robert
    Ruefenacht, Elias
    Fix, Michael
    Scheib, Stefan
    Reyes, Mauricio
    Ermis, Ekin
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S821 - S822
  • [6] Deep-learning-based Detection and Segmentation of Organs at Risk in Head and Neck
    Wu, Xueyu
    Wang, Zhonghua
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 910 - 915
  • [7] Development of a Deep Learning-Based Auto-Segmentation of Organs at Risk for Head and Neck Radiotherapy Planning
    Koo, J.
    Latifi, K.
    Caudell, J. J.
    Jordan, P.
    Shen, S.
    Adamson, P. M.
    Feygelman, V.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 112 (05): : E8 - E8
  • [8] Segmentation of Pneumothorax on Chest CTs Using Deep Learning Based on Unet-Resnet-50 Convolutional Neural Network Structure
    Gencer, Adem
    Toker, Yasin Ilter
    EUROPEAN JOURNAL OF THERAPEUTICS, 2024, 30 (03): : 249 - 257
  • [9] Segmentation of cardiac tissues and organs for CCTA images based on a deep learning model
    Cai, Shengze
    Lu, Yunxia
    Li, Bowen
    Gao, Qi
    Xu, Lei
    Hu, Xiuhua
    Zhang, Longjiang
    FRONTIERS IN PHYSICS, 2023, 11
  • [10] Using deep learning to generate synthetic CTs for radiotherapy treatment planning
    Bylund, M.
    Jonsson, J.
    Lundman, J.
    Brynolfsson, P.
    Garpebring, A.
    Nyholm, T.
    Lofstedt, T.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S283 - S283