Effects of protuberant structure on coalescence-induced jumping of droplets on superhydrophobic surfaces

被引:2
|
作者
Wang, Yuhang [1 ]
Rohlfs, Wilko [3 ]
Kneer, Reinhold [2 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mech & Power Engn, Harbin 150080, Peoples R China
[2] Rhein Westfal TH Aachen, Inst Heat & Mass Transfer, D-52056 Aachen, Germany
[3] Univ Twente, Fac Engn Technol, Dept Thermal & Fluid Engn, NL-7500 Enschede, Netherlands
关键词
SELF-ENHANCEMENT;
D O I
10.1063/5.0156249
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The coalescence-induced jumping of droplets on superhydrophobic surfaces is useful in engineering-related applications to enhance condensation-based heat transfer, self-cleaning, and anti-icing and, thus, has attracted extensive attention in research. Some researchers have claimed that superhydrophobic surfaces with protuberant structures can yield droplets with a higher jumping velocity. While the structure of the surface influences droplet dynamics, the concomitant energy transition also needs to be considered. The effects of the geometry on the mechanism of jumping and the energy transition need to be investigated. In this paper, an improved volume-of-fluid method is verified based on experiments and then applied to simulate the jumping behaviors of droplets on superhydrophobic surfaces with cuboid protuberant structures. The effects of repulsion caused by the contributions of the surface tension and the superhydrophobicity of the protuberance are crucial to enhancing the jumping of the droplets. The forces due to them provide a thrust oriented in the direction of jumping of the droplets to increase the value of the positive energy term, while reducing the area and duration of contact between the droplet and the substrate to reduce the negative dissipation term and enhance the efficiency of energy conversion. Surprisingly, an excessively tall structure leads to a sustainable increase in the velocity of jumping of the droplets under the effects of repulsion and the Laplace pressure after piercing the liquid bridge. The work here provides guidance to optimally combine a superhydrophobic substrate with special structures to enhance the jumping of droplets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Coalescence-induced jumping of droplets on superhydrophobic substrates with a beam structure
    Yu, Zhiyuan
    Zhang, Kaixuan
    Zhao, Jiayi
    Chen, Shuo
    Lin, Chensen
    Liu, Yang
    APPLIED SURFACE SCIENCE, 2022, 582
  • [2] Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces
    Xuemei Chen
    Ravi S. Patel
    Justin A. Weibel
    Suresh V. Garimella
    Scientific Reports, 6
  • [3] Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
    Attarzadeh, Reza
    Dolatabadi, Ali
    PHYSICS OF FLUIDS, 2017, 29 (01)
  • [4] Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces
    Chen, Xuemei
    Patel, Ravi S.
    Weibel, Justin A.
    Garimella, Suresh V.
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Coalescence-induced jumping of unequal-sized droplets on superhydrophobic surfaces
    Huang, Ting-en
    Zhang, Peng
    AIP ADVANCES, 2023, 13 (11)
  • [6] Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces
    Xie, Fang-Fang
    Lu, Gui
    Wang, Xiao-Dong
    Wang, Dan-Qi
    LANGMUIR, 2018, 34 (37) : 11195 - 11203
  • [7] Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture
    Vahabi, Hamed
    Wang, Wei
    Mabry, Joseph M.
    Kota, Arun K.
    SCIENCE ADVANCES, 2018, 4 (11):
  • [8] Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove
    Liu, Chuntian
    Zhao, Meirong
    Zheng, Yelong
    Lu, Dunqiang
    Song, Le
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 32542 - 32554
  • [9] Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch
    Wasserfall, Joram
    Figueiredo, Patric
    Kneer, Reinhold
    Rohlfs, Wilko
    Pischke, Philipp
    PHYSICAL REVIEW FLUIDS, 2017, 2 (12):
  • [10] Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces
    Gao, Yan
    Ke, Zhaoqing
    Yang, Wei
    Wang, Zhiqiang
    Zhang, Ying
    Wu, Wei
    LANGMUIR, 2022, 38 (32) : 9981 - 9991