Collective Human Opinions in Semantic Textual Similarity

被引:0
|
作者
Wang, Yuxia [1 ]
Tao, Shimin [2 ]
Xie, Ning
Yang, Hao
Baldwin, Timothy [1 ,3 ]
Verspoor, Karin [1 ,4 ]
机构
[1] Univ Melbourne, Melbourne, Vic, Australia
[2] Huawei TSC, Beijing, Peoples R China
[3] MBZUAI, Abu Dhabi, U Arab Emirates
[4] RMIT Univ, Melbourne, Vic, Australia
关键词
D O I
10.1162/tacl_a_00584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the subjective nature of semantic textual similarity (STS) and pervasive disagreements in STS annotation, existing benchmarks have used averaged human ratings as gold standard. Averaging masks the true distribution of human opinions on examples of low agreement, and prevents models from capturing the semantic vagueness that the individual ratings represent. In this work, we introduce USTS, the first Uncertainty-aware STS dataset with & SIM;15,000 Chinese sentence pairs and 150,000 labels, to study collective human opinions in STS. Analysis reveals that neither a scalar nor a single Gaussian fits a set of observed judgments adequately. We further show that current STS models cannot capture the variance caused by human disagreement on individual instances, but rather reflect the predictive confidence over the aggregate dataset.
引用
收藏
页码:997 / 1013
页数:17
相关论文
共 50 条
  • [1] Influence of Token Similarity Measures for Semantic Textual Similarity
    Sowmya, V.
    Vardhan, Vishnu B.
    Raju, Bhadri M. S. V. S.
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC), 2016, : 41 - 44
  • [2] FlexSTS: A Framework for Semantic Textual Similarity
    Freire, Janio
    Pinheiro, Vadia
    Feitosa, David
    LINGUAMATICA, 2016, 8 (02): : 23 - 31
  • [3] Semantic Textual Similarity in Bengali Text
    Shajalal, Md
    Aono, Masaki
    2018 INTERNATIONAL CONFERENCE ON BANGLA SPEECH AND LANGUAGE PROCESSING (ICBSLP), 2018,
  • [4] Turkish Dataset for Semantic Textual Similarity
    Fikri, Figen Beken
    Oflazer, Kemal
    Yanikoglu, Berrin
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [5] Semantic Textual Similarity in Quality Estimation
    Bechara, Hanna
    Parra Escartin, Carla
    Orasan, Constantin
    Specia, Lucia
    BALTIC JOURNAL OF MODERN COMPUTING, 2016, 4 (02): : 256 - 268
  • [6] Linguistically Conditioned Semantic Textual Similarity
    Tu, Jingxuan
    Xu, Keer
    Yue, Liulu
    Ye, Bingyang
    Rim, Kyeongmin
    Pustejovsky, James
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 1161 - 1172
  • [7] Correlation Coefficients and Semantic Textual Similarity
    Zhelezniak, Vitalii
    Savkov, Aleksandar
    Shen, April
    Hammerla, Nils Y.
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 951 - 962
  • [8] Czech Dataset for Semantic Textual Similarity
    Svoboda, Lukas
    Brychcin, Tomas
    TEXT, SPEECH, AND DIALOGUE (TSD 2018), 2018, 11107 : 213 - 221
  • [9] Semantic Textual Similarity of Sentences with Emojis
    Debnath, Alok
    Pinnaparaju, Nikhil
    Shrivastava, Manish
    Varma, Vasudeva
    Augenstein, Isabelle
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 426 - 430
  • [10] Prologue Evaluation of Semantic Similarity and Textual Inference
    Fonseca, Erick
    Santos, Leandro
    Criscuolo, Marcelo
    Aluisio, Sandra
    LINGUAMATICA, 2016, 8 (02): : IX - IX