Identities derived from a particular class of generating functions for Frobenius-Euler type Simsek numbers and polynomials

被引:0
|
作者
Agyuz, Erkan [1 ]
机构
[1] Gaziantep Univ, Naci Topcuoglu Vocat Sch, Gaziantep, Turkiye
关键词
Apostol-type polynomials; Bernoulli numbers; Euler numbers; Generating function; Stirling numbers of the first kind; Derivative formulas; formulas; Korovkin-Bohman Modulus of; BERNOULLI;
D O I
10.2298/FIL2405531A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by aid of the derivative of a particular class of generating functions for Frobenius-Euler type Simsek numbers and polynomials, we obtain some formulas. Moreover, we derive some Riemann integral and p-adic integral formulas for the Frobenius-Euler type Simsek polynomials mentioned above. We also construct a Szasz-type linear positive operator by using generating function for Frobenius-Euler type Simsek polynomials. Finally, some numerical results of this operator with convergence properties associated with the rate of modulus are presented.
引用
收藏
页码:1531 / 1545
页数:15
相关论文
共 50 条
  • [1] Generating Functions for q-Apostol Type Frobenius-Euler Numbers and Polynomials
    Simsek, Yilmaz
    AXIOMS, 2012, 1 (03) : 395 - 403
  • [2] SOME IDENTITIES FOR THE FROBENIUS-EULER NUMBERS AND POLYNOMIALS
    Kim, Taekyun
    Lee, Byungje
    Lee, Sang-Hun
    Rim, Seog-Hoon
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 544 - 551
  • [3] Some new identities of Frobenius-Euler numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [4] Some new identities of Frobenius-Euler numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Journal of Inequalities and Applications, 2012
  • [5] IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS
    Kucukoglu, Irem
    Simsek, Yilmaz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 265 - 284
  • [6] Some Identities of the Frobenius-Euler Polynomials
    Kim, Taekyun
    Lee, Byungje
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [7] Some convolution identities for Frobenius-Euler polynomials
    Pan, Jing
    Yang, Fengzao
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [8] Some convolution identities for Frobenius-Euler polynomials
    Jing Pan
    Fengzao Yang
    Advances in Difference Equations, 2017
  • [9] APOSTOL TYPE (p, q)-FROBENIUS-EULER POLYNOMIALS AND NUMBERS
    Duran, Ugur
    Acikgoz, Mehmet
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 555 - 567
  • [10] Some identities of Frobenius-Euler polynomials arising from umbral calculus
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2012