共 50 条
Failure of diet-induced transcriptional adaptations in alpha-synuclein transgenic mice
被引:0
|作者:
Kilzheimer, Alexander
[1
]
Hentrich, Thomas
[1
]
Rotermund, Carola
[2
,3
]
Kahle, Philipp J.
[2
]
Schulze-Hentrich, Julia M.
[1
,4
]
机构:
[1] Univ Tubingen, Inst Med Genet & Appl Genom, D-72074 Tubingen, Germany
[2] Univ Tubingen, Hertie Inst Clin Brain Res, Dept Neurodegenerat, Lab Funct Neurogenet, D-72074 Tubingen, Germany
[3] German Ctr Neurodegenerat Dis DZNE, D-72074 Tubingen, Germany
[4] Univ Tubingen, Inst Bioinformat & Med Informat IBMI, D-72074 Tubingen, Germany
关键词:
HIGH-FAT DIET;
GENOME-WIDE ASSOCIATION;
PARKINSONS-DISEASE;
INSULIN-RESISTANCE;
RISK LOCI;
MUTATION;
MUSCLE;
DYSFUNCTION;
HOMEOSTASIS;
MECHANISMS;
D O I:
10.1093/hmg/ddac205
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Nutritional influences have been discussed as potential modulators of Parkinson's disease (PD) pathology through various epidemiological and physiological studies. In animal models, a high-fat diet (HFD) with greater intake of lipid-derived calories leads to accelerated disease onset and progression. The underlying molecular mechanisms of HFD-induced aggravated pathology, however, remain largely unclear. In this study, we aimed to further illuminate the effects of a fat-enriched diet in PD by examining the brainstem and hippocampal transcriptome of alpha-synuclein transgenic mice exposed to a life-long HFD. Investigating individual transcript isoforms, differential gene expression and co-expression clusters, we observed that transcriptional differences between wild-type (WT) and transgenic animals intensified in both regions under HFD. Both brainstem and hippocampus displayed strikingly similar transcriptomic perturbation patterns. Interestingly, expression differences resulted mainly from responses in WT animals to HFD, while these genes remained largely unchanged or were even slightly oppositely regulated by diet in transgenic animals. Genes and co-expressed gene groups exhibiting this dysregulation were linked to metabolic and mitochondrial pathways. Our findings propose the failure of metabolic adaptions as the potential explanation for accelerated disease unfolding under exposure to HFD. From the identified clusters of co-expressed genes, several candidates lend themselves to further functional investigations.
引用
收藏
页码:450 / 461
页数:12
相关论文