Study of Superexponential Growth of the Mean Particle Flux by Monte Carlo Method

被引:0
|
作者
Lotova, G. Z. [1 ,2 ]
Mikhailov, G. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
关键词
statistical simulation; time asymptotics; random media; flux of particles; Voronoi mosaic;
D O I
10.1134/S1995423923030047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A comparative analysis of two algorithms ("by particles" and "by collisions") for estimation of the weighted mean particle flux is made on the basis of a test problem solving for a single-speed particle propagation process with isotropic scattering and multiplication in a random medium. It is shown that the first algorithm is preferable for a simple estimation of the mean flux and the second one fits better for assessment of the parameters of a possible superexponential growth of the flux. Two models of the random medium are considered: a chaotic "Voronoi mosaic" and a "spherically layered mosaic." For a fixed mean correlation radius, the superexponential growth turned out to be stronger for the layered mosaic.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [1] Study of Superexponential Growth of the Mean Particle Flux by Monte Carlo Method
    G. Z. Lotova
    G. A. Mikhailov
    Numerical Analysis and Applications, 2023, 16 : 229 - 235
  • [2] An improved Representative Particle Monte Carlo method for the simulation of particle growth
    Beutel, M.
    Dullemond, C. P.
    ASTRONOMY & ASTROPHYSICS, 2023, 670
  • [3] THE MONTE-CARLO FLUX METHOD
    SCHAEFER, G
    HUI, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 89 (01) : 1 - 30
  • [4] Estimation of the average particle flux in a stochastically homogeneous medium by Monte Carlo method
    Lotova, Galiya Z.
    Mikhailov, Gennady A.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2022, 37 (06) : 363 - 371
  • [5] Determination of mean particle volume, a Monte Carlo simulation
    Hammel, I
    Lagunoff, D
    COMPUTERS IN BIOLOGY AND MEDICINE, 1997, 27 (04) : 283 - 291
  • [6] The Monte Carlo growth method
    Orland, H
    WORKSHOP ON MONTE CARLO APPROACH TO BIOPOLYMERS AND PROTEIN FOLDING, 1998, : 90 - 97
  • [7] THE STUDY OF WHISKER GROWTH BY THE MONTE-CARLO METHOD
    ALEKSANDROV, LN
    KOGAN, AN
    MORDYUK, VS
    ROSLANOVA, OV
    TICHONOVA, NP
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1995, 147 (02): : 461 - 466
  • [8] THE MONTE-CARLO METHOD WITH ADDITIONAL RANDOM SAMPLING FOR CALCULATING PARTICLE-FLUX AT A POINT
    VORNON, AF
    KHISAMUTDINOV, AI
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (04): : 121 - 126
  • [9] The Monte Carlo method for particle transport problems
    Reiter, Detlev
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 141 - 158
  • [10] An introduction to the Monte Carlo method for particle simulations
    Siepmann, JI
    MONTE CARLO METHODS IN CHEMICAL PHYSICS, 1999, 105 : 1 - 12