A majorization penalty method for SVM with sparse constraint

被引:1
|
作者
Lu, Sitong [1 ]
Li, Qingna [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Key Lab Math Theory & Computat Informat Secur, Beijing, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Key Lab Math Theory & Computat Informat Secur, Beijing 100081, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2023年 / 38卷 / 03期
基金
中国国家自然科学基金;
关键词
Support vector machine; majorization penalty method; conjugate gradient method; sparse constraint; SUPPORT VECTOR MACHINE; CLASSIFICATION;
D O I
10.1080/10556788.2022.2142584
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Support vector machine (SVM) is an important and fundamental technique in machine learning. Soft-margin SVM models have stronger generalization performance compared with the hard-margin SVM. Most existing works use the hinge-loss function which can be regarded as an upper bound of the 0-1 loss function. However, it cannot explicitly control the number of misclassified samples. In this paper, we use the idea of soft-margin SVM and propose a new SVM model with a sparse constraint. Our model can strictly limit the number of misclassified samples, expressing the soft-margin constraint as a sparse constraint. By constructing a majorization function, a majorization penalty method can be used to solve the sparse-constrained optimization problem. We apply Conjugate-Gradient (CG) method to solve the resulting subproblem. Extensive numerical results demonstrate the impressive performance of the proposed majorization penalty method.
引用
收藏
页码:474 / 494
页数:21
相关论文
共 50 条
  • [1] Dictionary Learning for Sparse Approximations With the Majorization Method
    Yaghoobi, Mehrdad
    Blumensath, Thomas
    Davies, Mike E.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (06) : 2178 - 2191
  • [2] The Bias-Compensated Proportionate NLMS Algorithm With Sparse Penalty Constraint
    Jin, Zhan
    Guo, Longxiang
    Li, Yingsong
    IEEE ACCESS, 2020, 8 : 4954 - 4962
  • [3] PENALTY METHOD FOR THE SPARSE PORTFOLIO OPTIMIZATION PROBLEM
    Zhao, Hongxin
    Kong, Lingchen
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (09) : 2864 - 2884
  • [4] An Inexact Penalty Decomposition Method for Sparse Optimization
    Dong, Zhengshan
    Lin, Geng
    Chen, Niandong
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [5] An improvement of the penalty decomposition method for sparse approximation
    Dong, Zhengshan
    Zhu, Wenxing
    SIGNAL PROCESSING, 2015, 113 : 52 - 60
  • [6] Penalty Method for Optimal Control Problem with Phase Constraint
    Musabekov K.S.
    Journal of Mathematical Sciences, 2014, 203 (4) : 558 - 569
  • [7] A penalty PALM method for sparse portfolio selection problems
    Teng, Yue
    Yang, Li
    Yu, Bo
    Song, Xiaoliang
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (01): : 126 - 147
  • [8] An Image Restoration Method Based on Sparse Constraint
    Qiang, Zhenping
    Liu, Hui
    Chen, Xu
    Shang, Zhenhong
    Zeng, Lingjun
    FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [9] Stencil Penalty approach based constraint immersed boundary method
    Bale, Rahul
    Patankar, Neelesh A.
    Jansson, Niclas
    Onishi, Keiji
    Tsubokura, Makoto
    COMPUTERS & FLUIDS, 2020, 200
  • [10] A PENALTY METHOD FOR TOPOLOGY OPTIMIZATION SUBJECT TO A POINTWISE STATE CONSTRAINT
    Amstutz, Samuel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) : 523 - 544