Existence of normalized solutions for Schrödinger systems with linear and nonlinear couplings

被引:0
|
作者
Yun, Zhaoyang [1 ]
Zhang, Zhitao [2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Nonlinear Schrodinger systems; Normalized solutions; Minimax principle; SCHRODINGER-EQUATIONS; GROUND-STATES;
D O I
10.1186/s13661-024-01830-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear Bose-Einstein condensates Schr & ouml;dinger system {-Delta u(1 )- lambda(1)u(1 )= mu(1)u(1)(3 )+ beta u(1)u(2)(2 )+ kappa(x)u(2 )in R-3, -Delta u(2 )- lambda(2)u(2 )= mu(2)u(2)(3 )+ beta u(1)(2)u(2 )+ kappa(x)u(1 )in R-3, integral(3 )(R)u(1)(2 )= a(1)(2), integral(3)(R) u(2)(2 )= a(2)(2), where a(1), a(2), mu(1), mu(2), kappa = kappa(x) > 0, beta < 0, and lambda(1), lambda(2 )are Lagrangian multipliers. We use the Ekeland variational principle and the minimax method on manifold to prove that this system has a solution that is radially symmetric and positive.
引用
收藏
页数:20
相关论文
共 50 条