Chemical language models for de novo drug design: Challenges and opportunities

被引:40
|
作者
Grisoni, Francesca [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Inst Complex Mol Syst, Dept Biomed Engn, Eindhoven, Netherlands
[2] UMC, Ctr Living Technol, Alliance TU e, WUR UU, Utrecht, Netherlands
关键词
MOLECULAR DESIGN; INFORMATION; GENERATION; SMILES;
D O I
10.1016/j.sbi.2023.102527
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Generative deep learning is accelerating de novo drug design, by allowing the generation of molecules with desired properties on demand. Chemical language models - which generate new molecules in the form of strings using deep learning - have been particularly successful in this endeavour. Thanks to ad-vances in natural language processing methods and interdis-ciplinary collaborations, chemical language models are expected to become increasingly relevant in drug discovery. This minireview provides an overview of the current state-of-the-art of chemical language models for de novo design, and analyses current limitations, challenges, and advantages. Finally, a perspective on future opportunities is provided.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Leveraging molecular structure and bioactivity with chemical language models for de novo drug design
    Moret, Michael
    Pachon Angona, Irene
    Cotos, Leandro
    Yan, Shen
    Atz, Kenneth
    Brunner, Cyrill
    Baumgartner, Martin
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Leveraging molecular structure and bioactivity with chemical language models for de novo drug design
    Michael Moret
    Irene Pachon Angona
    Leandro Cotos
    Shen Yan
    Kenneth Atz
    Cyrill Brunner
    Martin Baumgartner
    Francesca Grisoni
    Gisbert Schneider
    Nature Communications, 14
  • [3] Diffusion Models in De Novo Drug Design
    Alakhdar, Amira
    Poczos, Barnabas
    Washburn, Newell
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (19) : 7238 - 7256
  • [4] Generative Models for De Novo Drug Design
    Tong, Xiaochu
    Liu, Xiaohong
    Tan, Xiaoqin
    Li, Xutong
    Jiang, Jiaxin
    Xiong, Zhaoping
    Xu, Tingyang
    Jiang, Hualiang
    Qiao, Nan
    Zheng, Mingyue
    JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (19) : 14011 - 14027
  • [5] De novo design of future rapeseed crops: Challenges and opportunities
    Shengyi Liu
    Harsh Raman
    Yang Xiang
    Chuanji Zhao
    Junyan Huang
    Yuanyuan Zhang
    The Crop Journal, 2022, 10 (03) : 587 - 596
  • [6] De novo design of future rapeseed crops: Challenges and opportunities
    Liu, Shengyi
    Raman, Harsh
    Xiang, Yang
    Zhao, Chuanji
    Huang, Junyan
    Zhang, Yuanyuan
    CROP JOURNAL, 2022, 10 (03): : 587 - 596
  • [7] Chemical genomics: a challenge for de novo drug design
    Dean, P. M.
    MOLECULAR BIOTECHNOLOGY, 2007, 37 (03) : 237 - 245
  • [8] Chemical genomics: a challenge for de novo drug design
    P. M. Dean
    Molecular Biotechnology, 2007, 37 : 237 - 245
  • [9] De novo drug design with deep generative models
    Das, Payel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [10] De Novo Fragment Design for Drug Discovery and Chemical Biology
    Rodrigues, Tiago
    Reker, Daniel
    Welin, Martin
    Caldera, Michael
    Brunner, Cyrill
    Gabernet, Gisela
    Schneider, Petra
    Walse, Bjoern
    Schneider, Gisbert
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (50) : 15079 - 15083