Data-driven identification of crystallization kinetics

被引:3
|
作者
Nyande, Baggie W. [1 ,2 ]
Nagy, Zoltan K. [2 ,3 ]
Lakerveld, Richard [1 ,4 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[2] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN USA
[3] Purdue Univ, Davidson Sch Chem Engn, 480 W Stadium Ave, W Lafayette, IN 47907 USA
[4] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Clear Water Bay, Hong Kong, Peoples R China
关键词
crystallization; data-driven modeling; PAT; population balance model; sparse identification; PARTICLE-SIZE DISTRIBUTION; SPARSE IDENTIFICATION; ASPECT RATIO;
D O I
10.1002/aic.18333
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A novel data-driven methodology is presented for developing mathematical models for crystallization processes. The data-driven approach is based on the sparse identification of nonlinear dynamics (SINDy) method, which iterates between a partial least-squares fit and a sparsity-promoting step leading to the discovery of sparse interpretable models. The performance of the SINDy methodology is characterized for the identification of crystallization kinetics in a mixed tank operated in a continuous mode, the isothermal crystallization of lysozyme in a batch stirred tank and cooling crystallization of paracetamol. The SINDy method is robust against noise. Good agreement is obtained between the data-driven model and the data obtained from crystallization experiments. The presented data-driven approach can be attractive for modeling industrial crystallization processes where process analytical technology tools are available for the measurement of process variables but functional forms of kinetic expressions are unknown.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-Driven Sparse System Identification
    Fattahi, Salar
    Sojoudi, Somayeh
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 462 - 469
  • [2] Data-Driven Load Pattern Identification
    Fang, Mengqiu
    Xiang, Yue
    Pan, Li
    Xu, Bohan
    Liu, Youbo
    Liu, Junyong
    Wang, Tianhao
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 568 - 573
  • [3] Data-Driven Approach for Modeling Coagulation Kinetics
    Lukashevich D.
    Ovchinnikov G.V.
    Tyukin I.Y.
    Matveev S.A.
    Brilliantov N.V.
    Computational Mathematics and Modeling, 2022, 33 (3) : 310 - 318
  • [4] Data-Driven Identification of Hydrogen Sulfide Scavengers
    Yang, Chun-tao
    Wang, Yingying
    Marutani, Eizo
    Ida, Tomoaki
    Ni, Xiang
    Xu, Shi
    Chen, Wei
    Zhang, Hui
    Akaike, Takaaki
    Ichinose, Fumito
    Xian, Ming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (32) : 10898 - 10902
  • [5] Data-driven identification of complex disease phenotypes
    Strauss, Markus J.
    Niederkrotenthaler, Thomas
    Thurner, Stefan
    Kautzky-Willer, Alexandra
    Klimek, Peter
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2021, 18 (180)
  • [6] A Data-Driven Method for Congestion Identification and Classification
    Zarindast, Atousa
    Poddar, Subhadipto
    Sharma, Anuj
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2022, 148 (04)
  • [7] Data-driven scale identification in oscillatory dynamos
    Guseva, Anna
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (02) : 1685 - 1696
  • [8] Data-Driven Identification of Nonlinear Flame Models
    Ghani, Abdulla
    Boxx, Isaac
    Noren, Carrie
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [9] Archetypal analysis for data-driven prototype identification
    Ragozini, G.
    Palumbo, F.
    D'Esposito, M. R.
    STATISTICAL ANALYSIS AND DATA MINING, 2017, 10 (01) : 6 - 20
  • [10] Data-driven identification for nonlinear dynamic systems
    Lyshevski, Sergey Edward
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2024, 44 (02) : 166 - 171