MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows

被引:22
|
作者
Dral, Pavlo O. [1 ,2 ,3 ]
Ge, Fuchun [1 ,2 ,3 ]
Hou, Yi-Fan [1 ,2 ,3 ]
Zheng, Peikun [1 ,2 ,3 ]
Chen, Yuxinxin [1 ,2 ,3 ]
Barbatti, Mario [4 ,5 ]
Isayev, Olexandr [6 ]
Wang, Cheng [1 ,2 ,7 ]
Xue, Bao-Xin [1 ,2 ,3 ,8 ,9 ]
Pinheiro Jr, Max [4 ]
Su, Yuming [1 ,2 ,7 ]
Dai, Yiheng [1 ,2 ,7 ,10 ]
Chen, Yangtao [1 ,2 ,7 ]
Zhang, Lina [1 ,2 ,3 ]
Zhang, Shuang [1 ,2 ,3 ,11 ]
Ullah, Arif [12 ]
Zhang, Quanhao [1 ,2 ,3 ]
Ou, Yanchi [1 ,2 ,3 ,13 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Fujian, Peoples R China
[3] Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China
[4] Aix Marseille Univ, CNRS, ICR, F-13013 Marseille, France
[5] Inst Univ France, F-75231 Paris, France
[6] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[7] Xiamen Univ, iChem, Xiamen 361005, Fujian, Peoples R China
[8] Xiamen Double Ten Middle Sch, Xiamen 361009, Fujian, Peoples R China
[9] Alstom Transport SA, St Ouen Sur Seine, France
[10] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[11] Neotrident Suzhou Co Ltd, Suzhou 215028, Jiangsu, Peoples R China
[12] Anhui Univ, Sch Phys & Optoelect Engn, Hefei 230601, Peoples R China
[13] Shanghai Mayoo Technol Inc, Shanghai 201318, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”; 国家重点研发计划; 美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELDS; THERMOCHEMISTRY; APPROXIMATIONS; OPTIMIZATION; ENTHALPIES; PARAMETERS; EFFICIENT; ENSEMBLE; ACCURATE;
D O I
10.1021/acs.jctc.3c01203
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows. This open-source package provides plenty of choice to the users who can run simulations with the command-line options, input files, or with scripts using MLatom as a Python package, both on their computers and on the online XACS cloud computing service at XACScloud.com. Computational chemists can calculate energies and thermochemical properties, optimize geometries, run molecular and quantum dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum mechanical, and combined models. The users can choose from an extensive library of methods containing pretrained ML models and quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many state-of-the-art software packages and libraries.
引用
收藏
页码:1193 / 1213
页数:21
相关论文
共 50 条
  • [1] MLatom 2: An Integrative Platform for Atomistic Machine Learning
    Pavlo O. Dral
    Fuchun Ge
    Bao-Xin Xue
    Yi-Fan Hou
    Max Pinheiro
    Jianxing Huang
    Mario Barbatti
    Topics in Current Chemistry, 2021, 379
  • [2] MLatom 2: An Integrative Platform for Atomistic Machine Learning
    Dral, Pavlo O.
    Ge, Fuchun
    Xue, Bao-Xin
    Hou, Yi-Fan
    Pinheiro, Max, Jr.
    Huang, Jianxing
    Barbatti, Mario
    TOPICS IN CURRENT CHEMISTRY, 2021, 379 (04)
  • [3] Towards Augmented Microscopy with Reinforcement Learning-Enhanced Workflows
    Xu, Michael
    Kumar, Abinash
    LeBeau, James M.
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (06) : 1952 - 1960
  • [4] Toward machine learning-enhanced high-throughput experimentation for chemistry
    Callaghan, Sarah
    PATTERNS, 2021, 2 (03):
  • [5] Advances in machine learning-enhanced nanozymes
    Park, Yeong-Seo
    Park, Byeong Uk
    Jeon, Hee-Jae
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [6] Machine Learning-Enhanced Pairs Trading
    Hadad, Eli
    Hodarkar, Sohail
    Lemeneh, Beakal
    Shasha, Dennis
    FORECASTING, 2024, 6 (02): : 434 - 455
  • [7] Training Data Selection for Machine Learning-Enhanced Monte Carlo Simulations in Structural Dynamics
    Thaler, Denny
    Elezaj, Leonard
    Bamer, Franz
    Markert, Bernd
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [8] Machine Learning-Enhanced Triboelectric Sensing Application
    Shang, Ruzhi
    Chen, Huamin
    Cai, Xu
    Shi, Xin
    Yang, Yanhui
    Wei, Xuan
    Wang, Jun
    Xu, Yun
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (07)
  • [9] Machine Learning-Enhanced Flexible Mechanical Sensing
    Wang, Yuejiao
    Adam, Mukhtar Lawan
    Zhao, Yunlong
    Zheng, Weihao
    Gao, Libo
    Yin, Zongyou
    Zhao, Haitao
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [10] Machine Learning-Enhanced Flexible Mechanical Sensing
    Yuejiao Wang
    Mukhtar Lawan Adam
    Yunlong Zhao
    Weihao Zheng
    Libo Gao
    Zongyou Yin
    Haitao Zhao
    Nano-Micro Letters, 2023, 15 (04) : 196 - 228