In-depth analysis of design & development for sensor-based human activity recognition system

被引:2
|
作者
Choudhury, Nurul Amin [1 ]
Soni, Badal [1 ]
机构
[1] Natl Inst Technol Silchar, Dept Comp Sci & Engn, Cachar 788010, Assam, India
关键词
Human activity recognition; Shallow learning; Ensemble learning; Deep learning; Activities of daily living and wearable sensors; ACCELEROMETER; FRAMEWORK;
D O I
10.1007/s11042-023-16423-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human Activity Recognition (HAR) has gained much attention since sensor technology has become more advanced and cost-effective. HAR is a process of identifying the daily living activities of an individual with the help of an efficient learning algorithm and prospective user-generated datasets. This paper addresses the technical advancement and classification of HAR systems in detail. Design issues, future opportunities, recent state-of-the-art related works, and a generic framework for activity recognition are discussed in a comprehensive manner with analytical discussion. Different publicly available datasets with their features and incorporated sensors are also descr-processing techniques with various performance metrics like - Accuracy, F1-score, Precision, Recall, Computational times and evaluation schemes are discussed for the comprehensive understanding of the Activity Recognition Chain (ARC). Different learning algorithms are exploited and compared for learning-based performance comparison. For each specific module of this paper, a compendious number of references is also cited for easy referencing. The main aim of this study is to give the readers an easy hands-on implementation in the field of HAR with verifiable evidence of different design issues.
引用
收藏
页码:73233 / 73272
页数:40
相关论文
共 50 条
  • [1] Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System
    Serpush, Fatemeh
    Menhaj, Mohammad Bagher
    Masoumi, Behrooz
    Karasfi, Babak
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [2] Lifelong Learning in Sensor-based Human Activity Recognition
    Ye, Juan
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 2 - 2
  • [3] Codebook Approach for Sensor-based Human Activity Recognition
    Shirahama, Kimiaki
    Koeping, Lukas
    Grzegorzek, Marcin
    UBICOMP'16 ADJUNCT: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2016, : 197 - 200
  • [4] Sensor-Based Activity Recognition
    Chen, Liming
    Hoey, Jesse
    Nugent, Chris D.
    Cook, Diane J.
    Yu, Zhiwen
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (06): : 790 - 808
  • [5] Lifelong Learning in Sensor-Based Human Activity Recognition
    Ye, Juan
    Dobson, Simon
    Zambonelli, Franco
    IEEE PERVASIVE COMPUTING, 2019, 18 (03) : 49 - 58
  • [6] Ensemble Approach for Sensor-Based Human Activity Recognition
    Brajesh, Sunidhi
    Ray, Indraneel
    UBICOMP/ISWC '20 ADJUNCT: PROCEEDINGS OF THE 2020 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2020 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2020, : 296 - 300
  • [7] A general framework for sensor-based human activity recognition
    Koeping, Lukas
    Shirahama, Kimiaki
    Grzegorzek, Marcin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 : 248 - 260
  • [8] Depth Sensor-Based In-Home Daily Activity Recognition and Assessment System for Stroke Rehabilitation
    Moore, Zoe
    Sifferman, Carter
    Tullis, Shaniah
    Ma, Mengxuan
    Proffitt, Rachel
    Skubic, Marjorie
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1051 - 1056
  • [9] Comprehensive machine and deep learning analysis of sensor-based human activity recognition
    Balaha, Hossam Magdy
    Hassan, Asmaa El-Sayed
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17): : 12793 - 12831
  • [10] Continual learning in sensor-based human activity recognition: An empirical benchmark analysis
    Jha, Saurav
    Schiemer, Martin
    Zambonelli, Franco
    Ye, Juan
    INFORMATION SCIENCES, 2021, 575 : 1 - 21