Mode-I fracture of steel fiber reinforced concrete at low temperatures: Characterization with 3D meso-scale modelling

被引:9
|
作者
Jin, Liu [1 ]
Jia, Likun [1 ]
Zhang, Renbo [1 ]
Yu, Wenxuan [1 ]
Du, Xiuli [1 ]
机构
[1] Beijing Univ Technol, Key Lab Urban Secur, Disaster Engn Minist Educ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Steel fiber reinforced concrete; Fracture mechanics; 3D meso -scale model; Low temperature; Toughness; DYNAMIC TENSILE BEHAVIOR; QUASI-BRITTLE FRACTURE; DOUBLE-K CRITERION; MECHANICAL-PROPERTIES; CRACK-PROPAGATION; COMPRESSION; STRENGTH;
D O I
10.1016/j.tafmec.2023.103797
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To investigate the mode I fracture behavior of SFRC (Steel Fiber Reinforced Concrete) at low temperatures, 3D meso-scale models of SFRC specimens with different steel fiber volume fractions (Vf = 0.0 %, 0.5 %, 1.0 % and 1.5 %) were developed by means of finite element analysis. The corresponding failure patterns as well as fracture properties were obtained by three-point bending simulations at low temperatures. SFRC is regarded as a multiphase material composed of mortar, aggregate, ITZ (Interface Transition Zone) and steel fiber at the mesoscopic scale. The comparison between simulation results and the test results verifies that the meso-scale numerical model could well describe the mechanical behavior of SFRC. The simulation results show that the fracture energy and unstable fracture toughness of SFRC significantly increase with the increase of fiber volume fraction and the decrease of temperature. The characteristic length of SFRC decreases with decreasing temper-ature but increases with increasing fiber volume fraction. The initial fracture toughness is less affected by fiber content while increasing with decreasing temperature. The prediction formulas were proposed which could be used to predict the fracture energy, characteristic length and unstable fracture toughness of SFRC at low tem-perature, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mechanical behavior of steel fiber reinforced concrete at cryogenic temperatures: Characterization with 3D meso-scale modelling
    Jin, Liu
    Jia, Likun
    Zhang, Renbo
    Yu, Wenxuan
    Du, Xiuli
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 219
  • [2] 3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete
    Naderi, Sadjad
    Zhang, Mingzhong
    COMPOSITE STRUCTURES, 2022, 291
  • [3] Three-dimensional meso-scale modelling of failure of steel fiber reinforced concrete at room and elevated temperatures
    Zhang, Renbo
    Jin, Liu
    Du, Xiuli
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 278
  • [4] Meso-scale modelling of steel fibre reinforced concrete with high strength
    Liang, Xiangwei
    Wu, Chengqing
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 165 : 187 - 198
  • [5] 3D meso-scale modelling of the interface behavior between ribbed steel bar and concrete
    Jin, Liu
    Liu, Mengjia
    Zhang, Renbo
    Du, Xiuli
    ENGINEERING FRACTURE MECHANICS, 2020, 239 (239)
  • [6] 3D meso-scale modelling of concrete material in spall tests
    Gang Chen
    Yifei Hao
    Hong Hao
    Materials and Structures, 2015, 48 : 1887 - 1899
  • [7] 3D meso-scale modelling of concrete material in spall tests
    Chen, Gang
    Hao, Yifei
    Hao, Hong
    MATERIALS AND STRUCTURES, 2015, 48 (06) : 1887 - 1899
  • [8] 3D lattice meso-scale modelling of the effect of lateral compression on tensile fracture processes in concrete
    Grassl, Peter
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 262-263
  • [9] 3D meso-scale modelling of the bonding failure between corroded ribbed steel bar and concrete
    Liu, Mengjia
    Jin, Liu
    Chen, Fengjuan
    Zhang, Renbo
    Du, Xiuli
    ENGINEERING STRUCTURES, 2022, 256
  • [10] 3D meso-scale numerical model and dynamic mechanical behavior of reinforced concrete
    Deng, Y. J.
    Li, L.
    Lv, T. H.
    Chen, X. W.
    Ye, Z. J.
    STRUCTURAL CONCRETE, 2024, 25 (03) : 1819 - 1839