Automated lung cancer diagnosis using swarm intelligence with deep learning

被引:0
|
作者
Shaikh, Nishat [1 ,2 ]
Shah, Parth [1 ,2 ]
机构
[1] Chandubhai S Patel Inst Technol CSPIT, Smt Kundanben Dinsha Patel Dept Informat Technol, Changa, India
[2] Charotar Univ Sci & Technol CHARUSAT, Fac Technol & Engn FTE, Changa, India
关键词
Lung cancer diagnosis; enhanced recurrent neural network; modified dimension range-based cat swarm optimisation; Frangi filter; modified fuzzy C-means clustering; COMPUTED-TOMOGRAPHY IMAGES; DETECTION SYSTEM; NODULE DETECTION; AIDED DETECTION; CT; ALGORITHM; CLASSIFICATION; MODEL; SCANS; LSTM;
D O I
10.1080/21681163.2023.2234054
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In worldwide, lung cancer is amajor threatening issue for humans that increase the mortality rate. Here, the existing techniques are suffered from huge false-positiverates. Such kind of limitations encourages the researchers to designa novel automated lung cancer identification model for providing highly accurate outcome in the early phase. Thus, the major goal ofthis research work is to design and initiate the lung cancer identification framework using an enhanced deep learning model. The standard dataset attained for the analysis is offered to pre-processing part. Then, the Frangi filter is utilized for removingthe vessel from the image. The adoption of modified Fuzzy C-Means Clustering (FCM) with local thresholding is employed for the nodule segmentation, where parameter tuning is executed by Modified Dimension Range-based Cat Swarm Optimization (MDR-CSO). The resultant texture and shape features are subjected to the Enhanced Recurrent Neural Network (ERNN) for diagnosing lung cancer. Throughout theresult analysis, the accuracy and MCC rate of the developed model is95% and 91%. Thus, the result analysis of the offered method providesa better lung cancer detection rate than the classical techniquesthroughout the experimental analysis.
引用
收藏
页码:2363 / 2385
页数:23
相关论文
共 50 条
  • [1] Lung Nodule Diagnosis via Deep Learning and Swarm Intelligence
    de Pinho Pinheiro, Cesar Affonso
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    COMPUTATIONAL SCIENCE - ICCS 2019, PT II, 2019, 11537 : 89 - 101
  • [2] Automated diagnosis of breast cancer using deep learning
    Floroiu, Iustin
    Timisica, Daniela
    Boncea, Radu Marius
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (03): : 99 - 112
  • [3] Automated Skin Cancer Diagnosis and Localization Using Deep Reinforcement Learning
    Renith, G.
    Senthilselvi, A.
    IETE JOURNAL OF RESEARCH, 2024, 70 (04) : 3631 - 3645
  • [4] Early diagnosis of lung cancer using deep learning and uncertainty measures
    Uzulmez, Sema
    Cifci, Mehmet Akif
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (01): : 385 - 400
  • [5] Automated Skin Cancer Detection and Classification using Cat Swarm Optimization with a Deep Learning Model
    Rajendran, Vijay Arumugam
    Shanmugam, Saravanan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12734 - 12739
  • [6] Detection and classification of pulmonary nodules using deep learning and swarm intelligence
    Cesar Affonso de Pinho Pinheiro
    Nadia Nedjah
    Luiza de Macedo Mourelle
    Multimedia Tools and Applications, 2020, 79 : 15437 - 15465
  • [7] Detection and classification of pulmonary nodules using deep learning and swarm intelligence
    de Pinho Pinheiro, Cesar Affonso
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15437 - 15465
  • [8] Automated Glaucoma Diagnosis using Deep Learning Approach
    Al-Bander, Baidaa
    Al-Nuaimy, Waleed
    Al-Taee, Majid A.
    Zheng, Yalin
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 207 - 210
  • [9] Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models
    Tan, Teck Yan
    Zhang, Li
    Lim, Chee Peng
    APPLIED SOFT COMPUTING, 2019, 84
  • [10] Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images
    Escorcia-Gutierrez, Jose
    Mansour, Romany F.
    Beleno, Kelvin
    Jimenez-Cabas, Javier
    Perez, Meglys
    Madera, Natasha
    Velasquez, Kevin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 4221 - 4235