Incremental reduction methods based on granular ball neighborhood rough sets and attribute grouping

被引:3
|
作者
Li, Yan [1 ,2 ]
Wu, Xiaoxue [2 ]
Wang, Xizhao [3 ]
机构
[1] Beijing Normal Univ Zhuhai, Res Ctr Appl Math & Interdisciplinary Sci, Zhuhai 519087, Guangdong, Peoples R China
[2] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Hebei, Peoples R China
[3] Shenzhen Univ, Big Data Inst, Coll Comp Sci & Software Engn, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Granular neighborhood rough set; Incremental algorithm; Attribute reduction; Attribute grouping; Relevance coefficient; ALGORITHM;
D O I
10.1016/j.ijar.2023.108974
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the framework of rough sets, incremental algorithms can effectively reduce repetitive computations for dynamic datasets by discovering the update principles of relevant knowledge. Considering the variations in attribute sets, incremental methods based on neighborhood granulation provide fast updates to attribute reduction in continuousvalued information systems. However, most of these methods assume that the sample distribution and neighborhood radius remain fixed with changes in the attribute set, which may mislead the granulation process and affect the model's classification ability. In this paper, a new incremental reduction method based on granular balls and attribute grouping is proposed for dynamic information systems with multiple attribute additions. Different neighborhood radii are adaptively determined when the attribute set changes, and the number of neighborhood granules can also be effectively reduced. Furthermore, the attributes are grouped based on the k-means algorithm, and only attributes from different groups or with small relevance to those in the current reduction set are considered to be incorporated as a reduction attribute, thus reducing the computation time and simultaneously preserving informative attributes. Linear and nonlinear correlation coefficients are used to measure attribute relevance based on which three corresponding incremental reduction algorithms are developed. Finally, extensive experimental results on 12 benchmark datasets are shown to compare the proposed method with non-incremental and typical incremental methods in terms of time cost, classification accuracy, the size of attribute reduction, and coverage of the reduction.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Extended rough sets model based on fuzzy granular ball and its attribute reduction
    Ji, Xia
    Peng, JianHua
    Zhao, Peng
    Yao, Sheng
    INFORMATION SCIENCES, 2023, 640
  • [2] Attribute reduction based on weighted neighborhood constrained fuzzy rough sets induced by grouping functions ☆
    He, Shan
    Qiao, Junsheng
    Jian, Chengxi
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 178
  • [3] Attribute reduction based on neighborhood constrained fuzzy rough sets
    Hu, Meng
    Guo, Yanting
    Chen, Degang
    Tsang, Eric C. C.
    Zhang, Qingshuo
    KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [4] Tri-level attribute reduction based on neighborhood rough sets
    Lianhui Luo
    Jilin Yang
    Xianyong Zhang
    Junfang Luo
    Applied Intelligence, 2024, 54 : 3786 - 3807
  • [5] Improving on a Rapid Attribute Reduction Algorithm Based on Neighborhood Rough Sets
    Guo, Gongzhen
    Liu, Zunren
    Lou, Chang
    Song, Xiaoxiao
    2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2015, : 236 - 240
  • [6] Dominance-Based Neighborhood Rough Sets and Its Attribute Reduction
    Chen, Hongmei
    Li, Tianrui
    Luo, Chuan
    Hu, Jie
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2015, 2015, 9436 : 89 - 99
  • [7] Tri-level attribute reduction based on neighborhood rough sets
    Luo, Lianhui
    Yang, Jilin
    Zhang, Xianyong
    Luo, Junfang
    APPLIED INTELLIGENCE, 2024, 54 (05) : 3786 - 3807
  • [8] Attribute reduction based on k-nearest neighborhood rough sets
    Wang, Changzhong
    Shi, Yunpeng
    Fan, Xiaodong
    Shao, Mingwen
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 106 : 18 - 31
  • [9] A novel approach to attribute reduction based on weighted neighborhood rough sets
    Hu, Meng
    Tsang, Eric C. C.
    Guo, Yanting
    Chen, Degang
    Xu, Weihua
    KNOWLEDGE-BASED SYSTEMS, 2021, 220
  • [10] Variable radius neighborhood rough sets and attribute reduction
    Zhang, Di
    Zhu, Ping
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 150 : 98 - 121