Uniform Asymptotic Estimate for the Ruin Probability in a Renewal Risk Model with Cox-Ingersoll-Ross Returns

被引:0
|
作者
Cheng, Ming [1 ]
Wang, Dingcheng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
基金
美国国家科学基金会;
关键词
uniform; asymptotics; the Cox-Ingersoll-Ross model; ruin probability; risk model; INVESTMENT RETURN; TIME; CLAIMS;
D O I
10.3390/math11051225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider an insurance risk model with arbitrary dependence structures between the claim sizes. Suppose that the risky investment in the insurer can be established by the Cox-Ingersoll-Ross model. When the claim-size distribution is heavy-tailed, a uniform asymptotic formula for ruin probability is obtained.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model
    Li, Zenghu
    Ma, Chunhua
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (08) : 3196 - 3233
  • [2] UNIFORM APPROXIMATION OF THE COX-INGERSOLL-ROSS PROCESS
    Milstein, Grigori N.
    Schoenmakers, John
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (04) : 1132 - 1156
  • [3] Estimation in the Cox-Ingersoll-Ross model
    Overbeck, L
    Ryden, T
    ECONOMETRIC THEORY, 1997, 13 (03) : 430 - 461
  • [4] Change detection in the Cox-Ingersoll-Ross model
    Pap, Gyula
    Szabo, Tamas T.
    STATISTICS & RISK MODELING, 2016, 33 (1-2) : 21 - 40
  • [5] A stable Cox-Ingersoll-Ross model with restart
    Peng, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1185 - 1194
  • [6] Wiener chaos and the Cox-Ingersoll-Ross model
    Grasselli, MR
    Hurd, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2054): : 459 - 479
  • [7] Discretization and Asymptotic Normality of Drift Parameters Estimator in the Cox-Ingersoll-Ross Model
    Prykhodko, Olha
    Ralchenko, Kostiantyn
    AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (01) : 82 - 99
  • [8] Embedding the Vasicek model into the Cox-Ingersoll-Ross model
    Sinkala, W.
    Leach, P. G. L.
    O'Hara, J. G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (02) : 152 - 159
  • [9] Local asymptotic properties for Cox-Ingersoll-Ross process with discrete observations
    Ben Alaya, Mohamed
    Kebaier, Ahmed
    Tran, Ngoc Khue
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (04) : 1401 - 1464
  • [10] Cox-Ingersoll-Ross model for wind speed modeling and forecasting
    Bensoussan, Alain
    Brouste, Alexandre
    WIND ENERGY, 2016, 19 (07) : 1355 - 1365