A new hybrid estimator for linear regression model analysis: Computations and simulations

被引:5
|
作者
Shewa, G. A. [1 ]
Ugwuowo, F. I. [2 ]
机构
[1] Taraba State Univ, Dept Math Sci, Jalingo, Nigeria
[2] Univ Nigeria, Dept Stat, Nsukka, Nigeria
关键词
Kibria; Lukman Estimator; Least Square; Linear Dependency; Modified Ridge; Type; Ridge Estimator; LIU-TYPE ESTIMATOR; BIASED ESTIMATOR; RIDGE-REGRESSION; COMBAT;
D O I
10.1016/j.sciaf.2022.e01441
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Linear regression model explores the relationship between a response variable and one or more independent variables. The parameters in the model are often estimated using the Ordinary Least Square Estimator (OLSE). However, OLSE suffers a breakdown when there is linear dependency among the predictors-a condition called multicollinearity. Several alternative estimators have been suggested as replacements for the OLSE. These include the Kibria-Lukman estimator and the modified ridge-type estimator. In this study, we pro-posed a hybrid estimator by combining the Kibria-Lukman estimator with the modified ridge-type estimator. The proposed estimator theoretically dominates the existing estima-tors. The simulation studies and real-life application supports the theoretical findings.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A New Ridge-Type Estimator for the Linear Regression Model: Simulations and Applications
    Kibria, B. M. Golam
    Lukman, Adewale F.
    SCIENTIFICA, 2020, 2020
  • [2] Developing a New Estimator in Linear Regression Model
    Lukman, Adewale F.
    Ayinde, Kayode
    Olatayo, Alabi
    Bamidele, Rasaq
    Aladeitan, Benedicta B.
    Adagunodo, Theophilus A.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE AND SUSTAINABLE DEVELOPMENT (ICSSD 2019): SCIENCE, TECHNOLOGY AND RESEARCH: KEYS TO SUSTAINABLE DEVELOPMENT, 2019, 1299
  • [3] A New Biased Estimator in Linear Regression Model
    Hao, Huibing
    Li, Chunping
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 306 - 310
  • [4] A New Estimator for the Gaussian Linear Regression Model with Multicollinearity
    Dawoud, Issam
    Kibria, B. M. Golam
    Lukman, Adewale F.
    Olufemi, Onifade C.
    THAILAND STATISTICIAN, 2023, 21 (04): : 910 - 925
  • [5] A new Liu-type estimator in linear regression model
    Li, Yalian
    Yang, Hu
    STATISTICAL PAPERS, 2012, 53 (02) : 427 - 437
  • [6] A new Liu-type estimator in linear regression model
    Yalian Li
    Hu Yang
    Statistical Papers, 2012, 53 : 427 - 437
  • [7] A new stochastic mixed Liu estimator in linear regression model
    Li, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (03) : 726 - 737
  • [8] A new stochastic mixed ridge estimator in linear regression model
    Li, Yalian
    Yang, Hu
    STATISTICAL PAPERS, 2010, 51 (02) : 315 - 323
  • [9] A New Stochastic Mixed Liu Estimator in Linear Regression Model
    Zuo, Weibing
    Cheng, Peng
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 386 - 390
  • [10] A new stochastic mixed ridge estimator in linear regression model
    Yalian Li
    Hu Yang
    Statistical Papers, 2010, 51 : 315 - 323