On Joint Discrete Universality of the Riemann Zeta-Function in Short Intervals

被引:1
|
作者
Chakraborty, Kalyan [1 ,2 ]
Kanemitsu, Shigeru
Laurincikas, Antanas [3 ,4 ]
机构
[1] Harish Chandra Res Inst, Dept Math, Chhatnag Rd Jhunsi, Allabahad 211019, India
[2] Kerala Sch Math, Kozhikode 673571, Kerala, India
[3] Kyushu Inst Thechnol, Fac Engn, Sensuicho 1-1, Kitakyushu 8048555, Japan
[4] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko g 24, LT-03225 Vilnius, Lithuania
关键词
Riemann zeta-function; universality; weak convergence;
D O I
10.3846/mma.2023.18884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we prove that the set of discrete shifts of the Riemann zeta-function (zeta(s + 2 pi ia(1)k), ... , zeta(s + 2 pi ia(r)k)), k is an element of N, approximating analytic non vanishing functions f(1)(s), ... , f(r)(s) defined on {s E C : 1/2 < Res < 1} has a positive density in the interval [N, N + M] with M = o(N), N -> infinity, with real algebraic numbers a(1), ... , a(r) linearly independent over Q. A similar result is obtained for shifts of certain absolutely convergent Dirichlet series.
引用
收藏
页码:596 / 610
页数:15
相关论文
共 50 条