FINITE GROUPS WITH ABNORMAL MINIMAL NONNILPOTENT SUBGROUPS

被引:2
|
作者
Wang, Zhigang [1 ]
Cai, Jinzhuan [1 ]
Safonova, Inna N. [2 ]
Skiba, Alexander N. [3 ]
机构
[1] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
[2] Belarusian State Univ, Dept Appl Math & Comp Sci, Minsk 220030, BELARUS
[3] Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
基金
中国国家自然科学基金;
关键词
finite group; soluble group; Schmidt group; abnormal subgroup; quasisimple group;
D O I
10.1017/S0004972722000843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe finite soluble nonnilpotent groups in which every minimal nonnilpotent subgroup is abnormal. We also show that if G is a nonsoluble finite group in which every minimal nonnilpotent subgroup is abnormal, then G is quasisimple and Z(G) is cyclic of order vertical bar Z(G)vertical bar is an element of {1, 2, 3, 4}.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 50 条