Choosing Between the Bi-Factor and Second-Order Factor Models: A Direct Test Using Latent Variable Modeling

被引:0
|
作者
Raykov, Tenko [1 ]
Calvocoressi, Lisa [2 ]
Schumacker, Randall E. [3 ]
机构
[1] Michigan State Univ, Measurement & Quantitat Methods, 443a Erickson Hall, E Lansing, MI 48824 USA
[2] Yale Univ, Yale Sch Med, Yale, CO USA
[3] Univ Alabama Tuscaloosa, Sch Educ, Tuscaloosa, AL USA
关键词
Bi-factor model; confirmatory factor analysis; model choice; nested models; second-order factor model; BIFACTOR;
D O I
10.1080/15366367.2023.2173547
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
This paper is concerned with the process of selecting between the increasingly popular bi-factor model and the second-order factor model in measurement research. It is indicated that in certain settings widely used in empirical studies, the second-order model is nested in the bi-factor model and obtained from the latter after imposing appropriate parameter constraints. These restrictions can be directly tested within the framework of the latent variable modeling methodology employing widely circulated software. The outlined model selection procedure provides a readily applied means of choosing between the two models of growing interest to measurement scholars, and is illustrated using numerical data.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 50 条
  • [1] Bi-factor and Second-Order Copula Models for Item Response Data
    Sayed H. Kadhem
    Aristidis K. Nikoloulopoulos
    Psychometrika, 2023, 88 : 132 - 157
  • [2] Bi-factor and Second-Order Copula Models for Item Response Data
    Kadhem, Sayed H.
    Nikoloulopoulos, Aristidis K.
    PSYCHOMETRIKA, 2023, 88 (01) : 132 - 157
  • [3] Formal Relations and an Empirical Comparison among the Bi-Factor, the Testlet, and a Second-Order Multidimensional IRT Model
    Rijmen, Frank
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2010, 47 (03) : 361 - 372
  • [4] Why Do Bi-Factor Models Outperform Higher-Order g Factor Models? A Network Perspective
    Kan, Kees-Jan
    Psychogyiopoulos, Anastasios
    Groot, Lennert J.
    de Jonge, Hannelies
    ten Hove, Debby
    JOURNAL OF INTELLIGENCE, 2024, 12 (02)
  • [5] A Distributed Adaptive Second-Order Latent Factor Analysis Model
    Wang, Jialiang
    Li, Weiling
    Luo, Xin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (11) : 2343 - 2345
  • [6] A Distributed Adaptive Second-Order Latent Factor Analysis Model
    Jialiang Wang
    Weiling Li
    Xin Luo
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2343 - 2345
  • [7] A paradigm for examining second-order factor models employing structural equation modeling
    Koufteros, Xenophon
    Babbar, Sunil
    Kaighobadi, Mehdi
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 120 (02) : 633 - 652
  • [8] Modeling Ability Differentiation in the Second-Order Factor Model
    Molenaar, Dylan
    Dolan, Conor V.
    van der Maas, Han L. J.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2011, 18 (04) : 578 - 594
  • [9] Testing measurement invariance of second-order factor models
    Chen, FF
    Sousa, KH
    West, SG
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2005, 12 (03) : 471 - 492
  • [10] Estimation in Second-Order Models with Errors in the Factor Levels
    Ardakani, Mostafa K.
    Das, Debashis
    Wulff, Shaun S.
    Robinson, Timothy J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (09) : 1573 - 1590