Design and energy, exergy, and exergoeconomic analyses of a novel biomass-based green hydrogen and power generation system integrated with carbon capture and power-to-gas

被引:19
|
作者
Kermani, Amirmohammad Arjomand [1 ]
Houshfar, Ehsan [1 ,2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, POB 11155-4563, Tehran, Iran
[2] Univ Tehran, Coll Engn, Mech Eng Dept, Room 818,New Bldg,Campus 2,North Kargar St, Tehran, Iran
关键词
Combined cycle power plant; Exergoeconomic analysis; Power-to-Gas; Carbon capture and storage; Energy and exergy analyses; RENEWABLE ENERGY;
D O I
10.1016/j.ijhydene.2023.10.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of thermal energy into electrical power through combustion in combined cycle power plants is a prevalent method of energy conversion. Sustainable energy management requires effective energy storage, and power-to-gas (P2G) technology is a recent solution to this problem. In this research work, a novel biomass-based power plant is proposed, this specific type of biomass is composed of industrial wood chips and wheat straw chopped wood with a 3.48:1 mass ratio and 19 wt% moisture. Detailed energy, exergy, and exergoeconomic analyses are performed for each component, considering various ambient and system conditions. This power plant is also equipped with a carbon capture and storage system, by which combustion's carbon dioxide is separated, and a power-to-gas energy storage system, by which hydrogen and oxygen gases are produced, allowing it to produce synthetic natural gas by the methanation process with various industrial applications and reduce carbon emissions. The energy and exergy analyses show that the overall energy efficiency and exergetic efficiency of the plant are 56.49 % and 35.48 %, respectively, which are highly acceptable and feasible. The combustion chamber is the primary location of exergy destruction, accounting for 52 % of the total exergy destruction in the cycles, followed by the methanation unit (15 %) and the turbine (12 %). Furthermore, the effect of modified ambient and manual operational parameters on the overall performance of the plant is analyzed, increasing the gas turbine inlet temperature improves the plant's energy efficiency to 57 %; but leads to a negative impact on its exergy efficiency (32 %), which manufacturing barriers make it difficult to increase beyond 1600 degrees C. Building the plant in a warmer geographic location barely impacts the energy efficiency; however, it may cause a decline as high as 1 % in the exergy efficiency.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [1] Novel Carbon Capture System Coupled with Solar Energy and Power-to-Gas Design Based on Thermodynamic, Exergoeconomic, and Exergoenvironmental Analyses
    Li, Xuqing
    Li, Yajun
    ENERGY & FUELS, 2025,
  • [2] Developing an Innovative biomass-based Power Plant for low-carbon Power production: Exergy and Exergoeconomic analyses
    Akrami, Ehsan
    Ameri, Mohammad
    Rocco, Matteo, V
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 19 (19)
  • [3] Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method
    Aghabalazadeh, Mohammad
    Neshat, Elaheh
    ENERGY, 2024, 288
  • [4] Energy and exergy analyses of a biomass-based hydrogen production system
    Cohce, M. K.
    Dincer, I.
    Rosen, M. A.
    BIORESOURCE TECHNOLOGY, 2011, 102 (18) : 8466 - 8474
  • [5] Optimal scheduling of integrated energy system considering carbon capture and power-to-gas
    Luo Z.
    Wang J.
    Wang H.
    Zhao W.
    Yang L.
    Shen X.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2023, 43 (12): : 127 - 134
  • [6] Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system
    Ma, Yiming
    Wang, Haixin
    Hong, Feng
    Yang, Junyou
    Chen, Zhe
    Cui, Haoqian
    Feng, Jiawei
    ENERGY, 2021, 236
  • [7] A biomass-based small-scale power generation system with energy/exergy recuperation
    Zhao, Zhongkai
    Situmorang, Yohanes Andre
    An, Ping
    Yang, Jingxuan
    Hao, Xiaogang
    Rizkiana, Jenny
    Abudula, Abuliti
    Guan, Guoqing
    ENERGY CONVERSION AND MANAGEMENT, 2021, 227
  • [8] Energy, exergy and economic analyses of a novel biomass fueled power plant with carbon capture and sequestration
    Yan, Linbo
    Cao, Yang
    He, Boshu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 690 : 812 - 820
  • [9] Energy and exergy analyses of a novel integrated process configuration for tri-generation heat, power and liquefied natural gas based on biomass gasification
    Ebrahimi, Armin
    Ziabasharhagh, Masoud
    ENERGY CONVERSION AND MANAGEMENT, 2020, 209
  • [10] Engineering design and exergy analyses for combustion gas turbine based power generation system
    Sue, DC
    Chuang, CC
    ENERGY, 2004, 29 (08) : 1183 - 1205