Bridging the diversity gap: Analytical and study design considerations for improving the accuracy of trans-ancestry genetic prediction

被引:2
|
作者
Bocher, Ozvan [1 ]
Gilly, Arthur [1 ]
Park, Young-Chan [1 ]
Zeggini, Eleftheria [1 ,2 ,3 ]
Morris, Andrew P. [1 ,4 ]
机构
[1] Helmholtz Zentrum Munchen, ITG, Munich, Germany
[2] Tech Univ Munich, Munich, Germany
[3] Klinikum Rechts Der Isar, Munich, Germany
[4] Univ Manchester, Ctr Genet & Genom Versus Arthrit, Ctr Musculoskeletal Res, Manchester, England
来源
关键词
POLYGENIC RISK SCORES; METAANALYSIS; ASSOCIATION; DISCOVERY; INSIGHTS; HISTORY;
D O I
10.1016/j.xhgg.2023.100214
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic prediction of common complex disease risk is an essential component of precision medicine. Currently, genome-wide association studies (GWASs) are mostly composed of European-ancestry samples and resulting polygenic scores (PGSs) have been shown to poorly transfer to other ancestries partly due to heterogeneity of allelic effects between populations. Fixed-effects (FETA) and random-effects (RETA) trans-ancestry meta-analyses do not model such ancestry-related heterogeneity, while ancestry-specific (AS) scores may suffer from low power due to low sample sizes. In contrast, trans-ancestry meta-regression (TAMR) builds ancestry-aware PGS that account for more complex trans-ancestry architectures. Here, we examine the predictive performance of these four PGSs under multiple genetic architectures and ancestry configurations. We show that the predictive performance of FETA and RETA is strongly affected by cross-ancestry genetic heterogeneity, while AS PGS performance decreases in under-represented target populations. TAMR PGS is also impacted by heterogeneity but maintains good prediction performance in most situations, especially in ancestry-diverse scenarios. In simulations of human complex traits, TAMR scores currently explain 25% more phenotypic variance than AS in triglyceride levels and 33% more phenotypic variance than FETA in type 2 diabetes in most non-European populations. Importantly, a high proportion of non-European-ancestry individuals is needed to reach prediction levels that are comparable in those populations to the one observed in European-ancestry studies. Our results highlight the need to rebalance the ancestral composition of GWAS to enable accurate prediction in non-European-ancestry groups, and demonstrate the relevance of meta-regression approaches for compensating some of the current population biases in GWAS.
引用
收藏
页数:8
相关论文
共 9 条
  • [1] Bridging the diversity gap: analytical and study design considerations for improving the accuracy of trans-ancestry genetic risk prediction
    Bocher, Ozvan
    Gilly, Arthur
    Zeggini, Eleftheria
    Morris, Andrew
    HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 37 - 37
  • [2] Bridging the Diversity Gap: Analytical and Study Design Considerations for Improving the Accuracy of Transancestry Genetic Risk Prediction
    Bocher, Ozvan
    Gilly, Arthur
    Zeggini, Eleftheria
    Morris, Andrew
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 482 - 482
  • [3] Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
    Conti, David, V
    Darst, Burcu F.
    Moss, Lilit C.
    Saunders, Edward J.
    Sheng, Xin
    Chou, Alisha
    Schumacher, Fredrick R.
    Al Olama, Ali Amin
    Benlloch, Sara
    Dadaev, Tokhir
    Brook, Mark N.
    Sahimi, Ali
    Hoffmann, Thomas J.
    Takahashi, Atushi
    Matsuda, Koichi
    Momozawa, Yukihide
    Fujita, Masashi
    Muir, Kenneth
    Lophatananon, Artitaya
    Wan, Peggy
    Le Marchand, Loic
    Wilkens, Lynne R.
    Stevens, Victoria L.
    Gapstur, Susan M.
    Carter, Brian D.
    Schleutker, Johanna
    Tammela, Teuvo L. J.
    Sipeky, Csilla
    Auvinen, Anssi
    Giles, Graham G.
    Southey, Melissa C.
    MacInnis, Robert J.
    Cybulski, Cezary
    Wokolorczyk, Dominika
    Lubinski, Jan
    Neal, David E.
    Donovan, Jenny L.
    Hamdy, Freddie C.
    Martin, Richard M.
    Nordestgaard, Borge G.
    Nielsen, Sune F.
    Weischer, Maren
    Bojesen, Stig E.
    Roder, Martin Andreas
    Iversen, Peter
    Batra, Jyotsna
    Chambers, Suzanne
    Moya, Leire
    Horvath, Lisa
    Clements, Judith A.
    NATURE GENETICS, 2021, 53 (01) : 11 - 15
  • [4] Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
    David V. Conti
    Burcu F. Darst
    Lilit C. Moss
    Edward J. Saunders
    Xin Sheng
    Alisha Chou
    Fredrick R. Schumacher
    Ali Amin Al Olama
    Sara Benlloch
    Tokhir Dadaev
    Mark N. Brook
    Ali Sahimi
    Thomas J. Hoffmann
    Atushi Takahashi
    Koichi Matsuda
    Yukihide Momozawa
    Masashi Fujita
    Kenneth Muir
    Artitaya Lophatananon
    Peggy Wan
    Loic Le Marchand
    Lynne R. Wilkens
    Victoria L. Stevens
    Susan M. Gapstur
    Brian D. Carter
    Johanna Schleutker
    Teuvo L. J. Tammela
    Csilla Sipeky
    Anssi Auvinen
    Graham G. Giles
    Melissa C. Southey
    Robert J. MacInnis
    Cezary Cybulski
    Dominika Wokołorczyk
    Jan Lubiński
    David E. Neal
    Jenny L. Donovan
    Freddie C. Hamdy
    Richard M. Martin
    Børge G. Nordestgaard
    Sune F. Nielsen
    Maren Weischer
    Stig E. Bojesen
    Martin Andreas Røder
    Peter Iversen
    Jyotsna Batra
    Suzanne Chambers
    Leire Moya
    Lisa Horvath
    Judith A. Clements
    Nature Genetics, 2021, 53 : 65 - 75
  • [5] Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
    Norihiro Kato
    Marie Loh
    Fumihiko Takeuchi
    Niek Verweij
    Xu Wang
    Weihua Zhang
    Tanika N Kelly
    Danish Saleheen
    Benjamin Lehne
    Irene Mateo Leach
    Alexander W Drong
    James Abbott
    Simone Wahl
    Sian-Tsung Tan
    William R Scott
    Gianluca Campanella
    Marc Chadeau-Hyam
    Uzma Afzal
    Tarunveer S Ahluwalia
    Marc Jan Bonder
    Peng Chen
    Abbas Dehghan
    Todd L Edwards
    Tõnu Esko
    Min Jin Go
    Sarah E Harris
    Jaana Hartiala
    Silva Kasela
    Anuradhani Kasturiratne
    Chiea-Chuen Khor
    Marcus E Kleber
    Huaixing Li
    Zuan Yu Mok
    Masahiro Nakatochi
    Nur Sabrina Sapari
    Richa Saxena
    Alexandre F R Stewart
    Lisette Stolk
    Yasuharu Tabara
    Ai Ling Teh
    Ying Wu
    Jer-Yuarn Wu
    Yi Zhang
    Imke Aits
    Alexessander Da Silva Couto Alves
    Shikta Das
    Rajkumar Dorajoo
    Jemma C Hopewell
    Yun Kyoung Kim
    Robert W Koivula
    Nature Genetics, 2015, 47 : 1282 - 1293
  • [6] Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
    Kato, Norihiro
    Loh, Marie
    Takeuchi, Fumihiko
    Verweij, Niek
    Wang, Xu
    Zhang, Weihua
    Kelly, Tanika N.
    Saleheen, Danish
    Lehne, Benjamin
    Leach, Irene Mateo
    Drong, Alexander W.
    Abbott, James
    Wahl, Simone
    Tan, Sian-Tsung
    Scott, William R.
    Campanella, Gianluca
    Chadeau-Hyam, Marc
    Afzal, Uzma
    Ahluwalia, Tarunveer S.
    Bonder, Marc Jan
    Chen, Peng
    Dehghan, Abbas
    Edwards, Todd L.
    Esko, Tonu
    Go, Min Jin
    Harris, Sarah E.
    Hartiala, Jaana
    Kasela, Silva
    Kasturiratne, Anuradhani
    Khor, Chiea-Chuen
    Kleber, Marcus E.
    Li, Huaixing
    Mok, Zuan Yu
    Nakatochi, Masahiro
    Sapari, Nur Sabrina
    Saxena, Richa
    Stewart, Alexandre F. R.
    Stolk, Lisette
    Tabara, Yasuharu
    Teh, Ai Ling
    Wu, Ying
    Wu, Jer-Yuarn
    Zhang, Yi
    Aits, Imke
    Alves, Alexessander Da Silva Couto
    Das, Shikta
    Dorajoo, Rajkumar
    Hopewell, Jemma C.
    Kim, Yun Kyoung
    Koivula, Robert W.
    NATURE GENETICS, 2015, 47 (11) : 1282 - +
  • [7] Publisher Correction: Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
    David V. Conti
    Burcu F. Darst
    Lilit C. Moss
    Edward J. Saunders
    Xin Sheng
    Alisha Chou
    Fredrick R. Schumacher
    Ali Amin Al Olama
    Sara Benlloch
    Tokhir Dadaev
    Mark N. Brook
    Ali Sahimi
    Thomas J. Hoffmann
    Atushi Takahashi
    Koichi Matsuda
    Yukihide Momozawa
    Masashi Fujita
    Kenneth Muir
    Artitaya Lophatananon
    Peggy Wan
    Loic Le Marchand
    Lynne R. Wilkens
    Victoria L. Stevens
    Susan M. Gapstur
    Brian D. Carter
    Johanna Schleutker
    Teuvo L. J. Tammela
    Csilla Sipeky
    Anssi Auvinen
    Graham G. Giles
    Melissa C. Southey
    Robert J. MacInnis
    Cezary Cybulski
    Dominika Wokołorczyk
    Jan Lubiński
    David E. Neal
    Jenny L. Donovan
    Freddie C. Hamdy
    Richard M. Martin
    Børge G. Nordestgaard
    Sune F. Nielsen
    Maren Weischer
    Stig E. Bojesen
    Martin Andreas Røder
    Peter Iversen
    Jyotsna Batra
    Suzanne Chambers
    Leire Moya
    Lisa Horvath
    Judith A. Clements
    Nature Genetics, 2021, 53 : 413 - 413
  • [8] Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction (vol 53, pg 65, 2021)
    Conti, David V.
    Darst, Burcu F.
    Moss, Lilit C.
    Saunders, Edward J.
    Sheng, Xin
    Chou, Alisha
    Schumacher, Fredrick R.
    Al Olama, Ali Amin
    Benlloch, Sara
    Dadaev, Tokhir
    Brook, Mark N.
    Sahimi, Ali
    Hoffmann, Thomas J.
    Takahashi, Atushi
    Matsuda, Koichi
    Momozawa, Yukihide
    Fujita, Masashi
    Muir, Kenneth
    Lophatananon, Artitaya
    Wan, Peggy
    Le Marchand, Loic
    Wilkens, Lynne R.
    Stevens, Victoria L.
    Gapstur, Susan M.
    Carter, Brian D.
    Schleutker, Johanna
    Tammela, Teuvo L. J.
    Sipeky, Csilla
    Auvinen, Anssi
    Giles, Graham G.
    Southey, Melissa C.
    MacInnis, Robert J.
    Cybulski, Cezary
    Wokolorczyk, Dominika
    Lubinski, Jan
    Neal, David E.
    Donovan, Jenny L.
    Hamdy, Freddie C.
    Martin, Richard M.
    Nordestgaard, Borge G.
    Nielsen, Sune F.
    Weischer, Maren
    Bojesen, Stig E.
    Roder, Martin Andreas
    Iversen, Peter
    Batra, Jyotsna
    Chambers, Suzanne
    Moya, Leire
    Horvath, Lisa
    Clements, Judith A.
    NATURE GENETICS, 2021, 53 (03) : 413 - 413
  • [9] Impact of Milk pH and Fat Content on the Prediction of Milk-to-Plasma Ratio: Knowledge Gap and Considerations for Lactation Study Design and Interpretation
    Abduljalil, Khaled
    Faisal, Muhammad
    CLINICAL PHARMACOKINETICS, 2024, 63 (11) : 1561 - 1572