A NOTE ON NUMERICAL RADIUS ATTAINING MAPPINGS

被引:0
|
作者
Jung, Mingu [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
关键词
Numerical radius; polynomials; compact approximation property; OPERATORS; THEOREM; INDEX; DENSENESS; RANGE;
D O I
10.1090/proc/16457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We prove that if every bounded linear operator (or N-homogeneous polynomials) on a Banach space X with the compact approximation property attains its numerical radius, then X is a finite dimensional space. Moreover, we present an improvement of the polynomial James' theorem for numerical radius proved by Acosta, Becerra Guerrero and Galan [Q. J. Math. 54 (2003), pp. 1-10]. Finally, the denseness of weakly (uniformly) continuous 2-homogeneous polynomials on a Banach space whose Aron-Berner extensions attain their numerical radii is obtained.
引用
收藏
页码:4419 / 4434
页数:16
相关论文
共 50 条
  • [1] A NOTE ON NUMERICAL RADIUS ATTAINING MAPPINGS
    Jung, Mingu
    arXiv, 2022,
  • [2] Norm or numerical radius attaining multilinear mappings and polynomials
    Choi, YS
    Kim, SG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 135 - 147
  • [3] NUMERICAL RADIUS ATTAINING OPERATORS
    CARDASSI, CS
    LECTURE NOTES IN MATHEMATICS, 1985, 1166 : 11 - 14
  • [4] Numerical-radius-attaining polynomials
    Acosta, MD
    Guerrero, JB
    Galán, MR
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 1 - 10
  • [5] A COUNTEREXAMPLE ON NUMERICAL RADIUS ATTAINING OPERATORS
    PAYA, R
    ISRAEL JOURNAL OF MATHEMATICS, 1992, 79 (01) : 83 - 101
  • [6] Numerical radius attaining compact linear operators
    Capel, Angela
    Martin, Miguel
    Meri, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1258 - 1266
  • [7] Denseness of Numerical Radius Attaining Holomorphic Functions
    Lee, Han Ju
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [8] Denseness of Numerical Radius Attaining Holomorphic Functions
    Han Ju Lee
    Journal of Inequalities and Applications, 2009
  • [9] On various types of density of numerical radius attaining operators
    Dantas, Sheldon
    Kim, Sun Kwang
    Lee, Han Ju
    Mazzitelli, Martin
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (08): : 1221 - 1238
  • [10] Norm or numerical radius attaining polynomials on C(K)
    Choi, YS
    Garcia, D
    Kim, SG
    Maestre, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) : 80 - 96