Fundus Image-Label Pairs Synthesis and Retinopathy Screening via GANs With Class-Imbalanced Semi-Supervised Learning

被引:5
|
作者
Xie, Yingpeng [1 ]
Wan, Qiwei [1 ]
Xie, Hai [1 ]
Xu, Yanwu [2 ,3 ]
Wang, Tianfu [1 ]
Wang, Shuqiang [4 ]
Lei, Baiying [1 ]
机构
[1] Shenzhen Univ, Med Sch, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound,Guang, Shenzhen 518055, Peoples R China
[2] South China Univ Technol, Sch Future Technol, Guangzhou 510641, Peoples R China
[3] Pazhou Lab, Guangzhou 510330, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Generators; Training; Semisupervised learning; Retinopathy; Games; Labeling; Image synthesis; fundus image; generative adversarial networks; class-imbalanced semi-supervised learning;
D O I
10.1109/TMI.2023.3263216
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Retinopathy is the primary cause of irreversible yet preventable blindness. Numerous deep-learning algorithms have been developed for automatic retinal fundus image analysis. However, existing methods are usually data-driven, which rarely consider the costs associated with fundus image collection and annotation, along with the class-imbalanced distribution that arises from the relative scarcity of disease-positive individuals in the population. Semi-supervised learning on class-imbalanced data, despite a realistic problem, has been relatively little studied. To fill the existing research gap, we explore generative adversarial networks (GANs) as a potential answer to that problem. Specifically, we present a novel framework, named CISSL-GANs, for class-imbalanced semi-supervised learning (CISSL) by leveraging a dynamic class-rebalancing (DCR) sampler, which exploits the property that the classifier trained on class-imbalanced data produces high-precision pseudo-labels on minority classes to leverage the bias inherent in pseudo-labels. Also, given the well-known difficulty of training GANs on complex data, we investigate three practical techniques to improve the training dynamics without altering the global equilibrium. Experimental results demonstrate that our CISSL-GANs are capable of simultaneously improving fundus image class-conditional generation and classification performance under a typical label insufficient and imbalanced scenario.
引用
收藏
页码:2714 / 2725
页数:12
相关论文
共 50 条
  • [1] A survey of class-imbalanced semi-supervised learning
    Gui, Qian
    Zhou, Hong
    Guo, Na
    Niu, Baoning
    MACHINE LEARNING, 2024, 113 (08) : 5057 - 5086
  • [2] A semi-supervised resampling method for class-imbalanced learning
    Jiang, Zhen
    Zhao, Lingyun
    Lu, Yu
    Zhan, Yongzhao
    Mao, Qirong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 221
  • [3] Class-Imbalanced Semi-Supervised Learning with Adaptive Thresholding
    Guo, Lan-Zhe
    Li, Yu-Feng
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [4] Multitask Semi-Supervised Learning for Class-Imbalanced Discourse Classification
    Spangher, Alexander
    May, Jonathan
    Shiang, Sz-rung
    Deng, Lingjia
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 498 - 517
  • [5] Semi-Supervised and Class-Imbalanced Open Set Medical Image Recognition
    Xu, Yiqian
    Wang, Ruofan
    Zhao, Rui-Wei
    Xiao, Xingxing
    Feng, Rui
    IEEE ACCESS, 2024, 12 : 122852 - 122877
  • [6] Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
    Lu, Zichen
    Jiang, Jiabin
    Cao, Pin
    Yang, Yongying
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [7] ABC: Auxiliary Balanced Classifier for Class-Imbalanced Semi-Supervised Learning
    Lee, Hyuck
    Shin, Seungjae
    Kim, Heeyoung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] ABAE: Auxiliary Balanced AutoEncoder for class-imbalanced semi-supervised learning
    Tang, Qianying
    Wei, Xiang
    Su, Qi
    Zhang, Shunli
    PATTERN RECOGNITION LETTERS, 2024, 182 : 118 - 124
  • [9] Gradient-Aware for Class-Imbalanced Semi-supervised Medical Image Segmentation
    Qi, Wenbo
    Wu, Jiafei
    Chan, S. C.
    COMPUTER VISION - ECCV 2024, PT LV, 2025, 15113 : 473 - 490
  • [10] OCI-SSL: Open Class-Imbalanced Semi-Supervised Learning With Contrastive Learning
    Zhou, Yuting
    Gao, Can
    Zhou, Jie
    Ding, Weiping
    Shen, Linlin
    Lai, Zhihui
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (06): : 3779 - 3792