Finite Mixtures of Multivariate Wrapped Normal Distributions for Model Based Clustering of p-Torus Data

被引:2
|
作者
Greco, Luca [1 ]
Inverardi, Pier Luigi Novi [2 ]
Agostinelli, Claudio [3 ]
机构
[1] Giustino Fortunato Telemat Univ, Viale Delcogliano 12, I-82100 Benevento, Italy
[2] Univ Trento, Dept Econ, Trento, Italy
[3] Univ Trento, Dept Math, Trento, Italy
关键词
Circular; Classification; EM; Likelihood; R PACKAGE; FITTING MIXTURES;
D O I
10.1080/10618600.2022.2128808
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a finite mixture model of multivariate Wrapped Normal distributions to handle non homogeneous circular data on a p-dimensional torus ( p >= 2). The Wrapped Normal distribution is a valid alternative to model multivariate circular or directional data on a p-torus. Parameter estimation is carried out through a nested (classification) EM algorithm, by exploiting the ideas of unwrapping circular data. The source of incompleteness in the outer E-step is represented by unobserved group memberships, whereas the source of incompleteness in the inner E-step is given by the unobserved vectors of wrapping coefficients. The finite sample behavior of the proposed method has been investigated by Monte Carlo numerical studies and real data examples. Supplemental materials for the article, including data and R codes for implementing methods, running simulations and replicate data analyses, are available online.
引用
收藏
页码:1215 / 1228
页数:14
相关论文
共 50 条
  • [1] Estimation of parameters in multivariate wrapped models for data on a p-torus
    Anahita Nodehi
    Mousa Golalizadeh
    Mehdi Maadooliat
    Claudio Agostinelli
    Computational Statistics, 2021, 36 : 193 - 215
  • [2] Weighted likelihood methods for robust fitting of wrapped models for p-torus data
    Agostinelli, Claudio
    Greco, Luca
    Saraceno, Giovanni
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (04) : 853 - 888
  • [3] Clustering using Skewed Data via Finite Mixtures of Multivariate Lognormal Distributions
    Deepana, R.
    Kiruthika, C.
    STATISTICS AND APPLICATIONS, 2022, 20 (02): : 219 - 237
  • [4] Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data
    Fang, Yuan
    Karlis, Dimitris
    Subedi, Sanjeena
    JOURNAL OF CLASSIFICATION, 2022, 39 (03) : 510 - 552
  • [5] Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data
    Yuan Fang
    Dimitris Karlis
    Sanjeena Subedi
    Journal of Classification, 2022, 39 : 510 - 552
  • [6] Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for Clustering Count Data
    Payne, Andrea
    Silva, Anjali
    Rothstein, Steven J.
    McNicholas, Paul D.
    Subedi, Sanjeena
    arXiv, 2023,
  • [7] Finite mixtures of multivariate skew tail-inflated normal distributions
    Tomarchio, Salvatore D.
    Bagnato, Luca
    Punzo, Antonio
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025,
  • [8] Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions
    Wang, Wan-Lun
    Jamalizadeh, Ahad
    Lin, Tsung-, I
    STATISTICAL PAPERS, 2020, 61 (06) : 2643 - 2670
  • [9] Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions
    Wan-Lun Wang
    Ahad Jamalizadeh
    Tsung-I Lin
    Statistical Papers, 2020, 61 : 2643 - 2670
  • [10] P-Torus: Torus-based Optical Packet Switching Architecture for intra-Data Centre Networks
    Chaintoutis, Charidimos
    Bogris, Adonis
    Syvridis, Dimitris
    2018 PHOTONICS IN SWITCHING AND COMPUTING (PSC), 2018,