Deep-learning-based reconstruction of the neutrino direction and energy for in-ice radio detectors

被引:6
|
作者
Glaser, C. [1 ]
McAleer, S. [2 ]
Stjarnholm, S. [1 ]
Baldi, P. [2 ]
Barwick, S. W. [3 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, SE-75237 Uppsala, Sweden
[2] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
瑞典研究理事会;
关键词
UHE neutrino; In-ice radio; Askaryan; Deep-learning; Radio detection; SHOWERS;
D O I
10.1016/j.astropartphys.2022.102781
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ultra-high-energy (UHE) neutrinos (> 1016 eV) can be measured cost-effectively using in-ice radio detection, which has been explored successfully in pilot arrays. A large radio detector is currently being constructed in Greenland with the potential to measure the first UHE neutrino, and an order-of-magnitude more sensitive detector is being planned with IceCube-Gen2. For such shallow radio detector stations, we present an end-to -end reconstruction of the neutrino energy and direction using deep neural networks (DNNs) developed and tested on simulated data. The DNN determines the energy with a standard deviation of a factor of two around the true energy (o-approximate to 0.3 in log10(E)), which meets the science requirements of UHE neutrino detectors. For the first time, we are able to predict the neutrino direction precisely for all event topologies including the complicated electron neutrino charged-current (ve-CC) interactions. The obtained angular resolution shows a narrow peak at O(1 degrees) with extended tails that push the 68% quantile for non-ve-CC (resp. ve-CC interactions) to 4 degrees(5 degrees). This highlights the advantages of DNNs for modeling the complex correlations in radio detector data, thereby enabling measurement of neutrino energy and direction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Reconstructing the neutrino energy for in-ice radio detectors
    Aguilar, J. A.
    Allison, P.
    Beatty, J. J.
    Bernhoff, H.
    Besson, D.
    Bingefors, N.
    Botner, O.
    Bouma, S.
    Buitink, S.
    Carter, K.
    Cataldo, M.
    Clark, B. A.
    Curtis-Ginsberg, Z.
    Connolly, A.
    Dasgupta, P.
    de Kockere, S.
    de Vries, K. D.
    Deaconu, C.
    DuVernois, M. A.
    Glaser, C.
    Hallgren, A.
    Hallmann, S.
    Hanson, J. C.
    Hendricks, B.
    Hokanson-Fasig, B.
    Hornhuber, C.
    Hughes, K.
    Karle, A.
    Kelley, J. L.
    Klein, S. R.
    Krebs, R.
    Lahmann, R.
    Latif, U.
    Meures, T.
    Meyers, Z. S.
    Mulrey, K.
    Nelles, A.
    Novikov, A.
    Oberla, E.
    Oeyen, B.
    Pandya, H.
    Plaisier, I
    Pyras, L.
    Ryckbosch, D.
    Scholten, O.
    Seckel, D.
    Smith, D.
    Southall, D.
    Torres, J.
    Toscano, S.
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (02):
  • [2] Reconstructing the arrival direction of neutrinos in deep in-ice radio detectors
    Ilse Plaisier
    Sjoerd Bouma
    Anna Nelles
    The European Physical Journal C, 83
  • [3] Reconstructing the arrival direction of neutrinos in deep in-ice radio detectors
    Plaisier, Ilse
    Bouma, Sjoerd
    Nelles, Anna
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (05):
  • [4] Neutrino vertex reconstruction with in-ice radio detectors using surface reflections and implications for the neutrino energy resolution
    Anker, A.
    Barwick, S. W.
    Bernhoff, H.
    Besson, D. Z.
    Bingefors, N.
    Garcia-Fernandez, D.
    Gaswint, G.
    Glaser, C.
    Hallgren, A.
    Hanson, J. C.
    Klein, S. R.
    Kleinfelder, S. A.
    Lahmann, R.
    Latif, U.
    Nam, J.
    Novikov, A.
    Nelles, A.
    Paul, M. P.
    Persichilli, C.
    Plaisier, I.
    Prakash, T.
    Shively, S. R.
    Tatar, J.
    Unger, E.
    Wang, S. -H.
    Welling, C.
    Zierke, S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (11):
  • [5] Prospects for neutrino-flavor physics with in-ice radio detectors
    Glaser, Christian
    Garcia-Fernandez, D.
    Nelles, Anna
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [6] Reconstructing the neutrino energy for in-ice radio detectorsA study for the Radio Neutrino Observatory Greenland (RNO-G)
    J. A. Aguilar
    P. Allison
    J. J. Beatty
    H. Bernhoff
    D. Besson
    N. Bingefors
    O. Botner
    S. Bouma
    S. Buitink
    K. Carter
    M. Cataldo
    B. A. Clark
    Z. Curtis-Ginsberg
    A. Connolly
    P. Dasgupta
    S. de Kockere
    K. D. de Vries
    C. Deaconu
    M. A. DuVernois
    C. Glaser
    A. Hallgren
    S. Hallmann
    J. C. Hanson
    B. Hendricks
    B. Hokanson-Fasig
    C. Hornhuber
    K. Hughes
    A. Karle
    J. L. Kelley
    S. R. Klein
    R. Krebs
    R. Lahmann
    U. Latif
    T. Meures
    Z. S. Meyers
    K. Mulrey
    A. Nelles
    A. Novikov
    E. Oberla
    B. Oeyen
    H. Pandya
    I. Plaisier
    L. Pyras
    D. Ryckbosch
    O. Scholten
    D. Seckel
    D. Smith
    D. Southall
    J. Torres
    S. Toscano
    The European Physical Journal C, 2022, 82
  • [7] A Wavelength-shifting Optical Module (WOM) for in-ice neutrino detectors
    Hebecker, Dustin
    Archinger, Markus Gerhard
    Boeser, Sebastian
    Brostean-Kaiser, Jannes
    Rosendo, Esther Del Pino
    Di Lorenzo, Vincenzo
    DuVernois, Michael
    Falke, Peter Johannes
    Foesig, Carl-Christian
    Karg, Timo
    Koepke, Lutz
    Kowalski, Marek
    Looft, Andreas
    Sand, Krystina
    Tosi, Delia
    VERY LARGE VOLUME NEUTRINO TELESCOPE (VLVNT-2015), 2016, 116
  • [8] Implications of in-ice volume scattering for radio-frequency neutrino experiments
    Nozdrina, A.
    Besson, D.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (10):
  • [9] History and Current Status of In-Ice Radio Frequency (RF) Neutrino Detection
    Besson, Dave
    5TH INTERNATIONAL WORKSHOP ON ACOUSTIC AND RADIO EEV NEUTRINO DETECTION ACTIVITIES (ARENA 2012), 2013, 1535 : 9 - 14
  • [10] Robustness of Deep-Learning-Based RF UAV Detectors
    Elyousseph, Hilal
    Altamimi, Majid
    SENSORS, 2024, 24 (22)