Discontinuous Solutions of Hamilton-Jacobi Equations Versus Radon Measure-Valued Solutions of Scalar Conservation Laws: Disappearance of Singularities
被引:2
|
作者:
Bertsch, Michiel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
CNR, Ist Applicaz Calcolo M Picone, Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Bertsch, Michiel
[1
,2
]
Smarrazzo, Flavia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campus Biomed Roma, Via Alvaro del Portillo 21, I-00128 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Smarrazzo, Flavia
[3
]
Terracina, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Terracina, Andrea
[4
]
Tesei, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Applicaz Calcolo M Picone, Rome, Italy
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Tesei, Alberto
[2
,4
]
机构:
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
[2] CNR, Ist Applicaz Calcolo M Picone, Rome, Italy
[3] Univ Campus Biomed Roma, Via Alvaro del Portillo 21, I-00128 Rome, Italy
[4] Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, Italy
Hamilton-Jacobi equation;
First order hyperbolic conservation laws;
Singular boundary conditions;
Waiting time;
SEMICONTINUOUS VISCOSITY SOLUTIONS;
UNIQUENESS;
D O I:
10.1007/s10884-021-09997-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let H be a bounded and Lipschitz continuous function. We consider discontinuous viscosity solutions of the Hamilton-Jacobi equation U-t + H(U-x) = 0 and signed Radon measure valued entropy solutions of the conservation law u(t) + [H(u)](x) = 0. After having proved a precise statement of the formal relation U-x = u, we establish estimates for the (strictly positive!) times at which singularities of the solutions disappear. Here singularities are jump discontinuities in case of the Hamilton-Jacobi equation and signed singular measures in case of the conservation law.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
CNR, Ist Applicaz Calcolo M Picone, Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Bertsch, Michiel
Smarrazzo, Flavia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campus Biomed Roma, Via Alvaro del Portillo 21, I-00128 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Smarrazzo, Flavia
Terracina, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Terracina, Andrea
Tesei, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Applicaz Calcolo M Picone, Rome, Italy
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
CNR, Ist Applicaz Calcolo M Picone, Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Bertsch, Michiel
Smarrazzo, Flavia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campus Biomed Roma, Fac Dipartimentale Ingn, Via Alvaro del Portillo 21, I-00128 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Smarrazzo, Flavia
Terracina, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
Terracina, Andrea
Tesei, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Applicaz Calcolo M Picone, Rome, Italy
Univ Sapienza Roma, Dipartimento Matemat G Castelnuovo, Ple A Moro 5, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
机构:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via Della Ricerca Scientifica 1, Roma,00133, ItalyDipartimento di Matematica, Università di Roma Tor Vergata, Via Della Ricerca Scientifica 1, Roma,00133, Italy
Cannarsa, Piermarco
Cheng, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Nanjing University, Nanjing,210093, ChinaDipartimento di Matematica, Università di Roma Tor Vergata, Via Della Ricerca Scientifica 1, Roma,00133, Italy
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Cannarsa, Piermarco
Cheng, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R ChinaUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy