Fast Gap-Filling of Massive Data by Local-Equilibrium Conditional Simulations on GPU

被引:0
|
作者
Lach, M. [1 ]
Zukovic, M. [1 ]
机构
[1] Pavol Jozef Safarik Univ Kosice, Inst Phys, Fac Sci, Dept Theoret Phys & Astrophys, Pk Angelinum 9, Kosice, Slovakia
关键词
Spatial interpolation; Local-equilibrium simulation; Non-Gaussian model; Heterogeneous data; GPU parallel computing; CUDA; KRIGING INTERPOLATION; MODELS; ACCELERATION; ALGORITHM; CUDA;
D O I
10.1007/s11004-023-10092-8
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The ever-growing size of modern space-time data sets, such as those collected by remote sensing, requires new techniques for their efficient and automated processing, including gap-filling of missing values. Compute Unified Device Architecture-based parallelization on graphics processing units (GPUs) has become a popular way to dramatically increase the computational efficiency of various approaches. Recently, a computationally efficient and competitive yet simple spatial prediction approach inspired by statistical physics models, called the modified planar rotator method, was proposed. Its GPU implementation allowed additional impressive computational acceleration exceeding two orders of magnitude in comparison with central processing unit calculations. In the current study, a rather general approach to modeling spatial heterogeneity in GPU-implemented spatial prediction methods for two-dimensional gridded data is proposed by introducing spatial variability to model parameters. Predictions of unknown values are obtained from non-equilibrium conditional simulations, assuming "local" equilibrium conditions. It is demonstrated that the proposed method leads to significant improvements in both prediction performance and computational efficiency.
引用
收藏
页码:573 / 603
页数:31
相关论文
共 50 条
  • [1] Fast Gap-Filling of Massive Data by Local-Equilibrium Conditional Simulations on GPU
    M. Lach
    M. Žukovič
    Mathematical Geosciences, 2024, 56 : 573 - 603
  • [2] Evaluation of the Consistency of Three GRACE Gap-Filling Data
    Qian, An
    Yi, Shuang
    Li, Feng
    Su, Boli
    Sun, Guangtong
    Liu, Xiaoyang
    REMOTE SENSING, 2022, 14 (16)
  • [3] Gap-filling methods for 3D PlanTIS data
    Loukiala, A.
    Tuna, U.
    Beer, S.
    Jahnke, S.
    Ruotsalainen, U.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (20): : 6125 - 6139
  • [4] How good are hydrological models for gap-filling streamflow data?
    Zhang, Yongqiang
    Post, David
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (08) : 4593 - 4604
  • [5] Gap-filling strategies for annual VOC flux data sets
    Bamberger, I.
    Hoertnagl, L.
    Walser, M.
    Hansel, A.
    Wohlfahrt, G.
    BIOGEOSCIENCES, 2014, 11 (08) : 2429 - 2442
  • [6] Imputing missing data in plant traits: A guide to improve gap-filling
    Joswig, Julia S.
    Kattge, Jens
    Kraemer, Guido
    Mahecha, Miguel D.
    Rueger, Nadja
    Schaepman, Michael E.
    Schrodt, Franziska
    Schuman, Meredith C.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2023, 32 (08): : 1395 - 1408
  • [7] A comparison of gap-filling approaches for Landsat-7 satellite data
    Yin, Gaohong
    Mariethoz, Gregoire
    Sun, Ying
    McCabe, Matthew F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (23) : 6653 - 6679
  • [8] Missing Rainfall Daily Data: A Comparison Among Gap-Filling Approaches
    Camilla Fagandini
    Valeria Todaro
    Maria Giovanna Tanda
    João L. Pereira
    Leonardo Azevedo
    Andrea Zanini
    Mathematical Geosciences, 2024, 56 : 191 - 217
  • [9] Missing Rainfall Daily Data: A Comparison Among Gap-Filling Approaches
    Fagandini, Camilla
    Todaro, Valeria
    Tanda, Maria Giovanna
    Pereira, Joao L.
    Azevedo, Leonardo
    Zanini, Andrea
    MATHEMATICAL GEOSCIENCES, 2024, 56 (02) : 191 - 217
  • [10] A gap-filling method for room temperature data based on autoencoder neural networks
    Liguori, Antonio
    Markovic, Romana
    Frisch, Jerome
    Wagner, Andreas
    Causone, Francesco
    van Treeck, Christoph
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 2427 - 2434