Wireless dielectrophoresis trapping and remote impedance sensing via resonant wireless power transfer

被引:7
|
作者
Ertsgaard, Christopher T. [1 ]
Kim, Minki [1 ]
Choi, Jungwon [1 ]
Oh, Sang-Hyun [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
SELECTIVE DETECTION; MANIPULATION; BACTERIA;
D O I
10.1038/s41467-022-35777-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nearly all biosensing platforms can be described using two fundamental steps -collection and detection. Target analytes must be delivered to a sensing element, which can then relay the transduced signal. For point-of-care technologies, where operation is to be kept simple, typically the collection step is passive diffusion driven-which can be slow or limiting under low concentrations. This work demonstrates an integration of both active collection and detection by using resonant wireless power transfer coupled to a nanogap capacitor. Nanoparticles suspended in deionized water are actively trapped using wireless dielectrophoresis and positioned within the most sensitive fringe field regions for wireless impedance-based detection. Trapping of 40 nm particles and larger is demonstrated using a 3.5 (VRMS), 1 MHz radio frequency signal delivered over a distance greater than 8 cm from the nanogap capacitor. Wireless trapping and release of 1 mu m polystyrene beads is simultaneously detected in real-time over a distance of 2.5 cm from the nanogap capacitor. Herein, geometric scaling strategies coupled with optimal circuit design is presented to motivate combined collection and detection biosensing platforms amenable to wireless and/or smartphone operation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Wireless dielectrophoresis trapping and remote impedance sensing via resonant wireless power transfer
    Christopher T. Ertsgaard
    Minki Kim
    Jungwon Choi
    Sang-Hyun Oh
    Nature Communications, 14
  • [2] Impedance Matching and Power Division Using Impedance Inverter for Wireless Power Transfer via Magnetic Resonant Coupling
    Koh, Kim Ean
    Beh, Teck Chuan
    Imura, Takehiro
    Hori, Yoichi
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2014, 50 (03) : 2061 - 2070
  • [3] Remote Tuning of Resonant Circuits Using Wireless Power Transfer
    Ayadi, Houda
    Machac, Jan
    Svanda, Milan
    Boulejfen, Noureddine
    Latrach, Lassaad
    2022 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2022, : 946 - 948
  • [4] Remote Tuning of Resonant Circuits Using Wireless Power Transfer
    Ayadi, Houda
    MacHac, Jan
    Svanda, Milan
    Boulejfen, Noureddine
    Latrach, Lassaad
    Asia-Pacific Microwave Conference Proceedings, APMC, 2022, 2022-November : 946 - 948
  • [5] Selective Wireless Power Transfer via Magnetic Resonant Coupling by Using Variable Impedance Circuit
    Nakagawa, Takahiro
    Sugimoto, Tomoya
    Nozaki, Takahiro
    Murakami, Toshiyuki
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 4834 - 4839
  • [6] High-efficiency resonant coupled wireless power transfer via tunable impedance matching
    Anowar, Tanbir Ibne
    Das Barman, Surajit
    Reza, Ahmed Wasif
    Kumar, Narendra
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2017, 104 (10) : 1607 - 1625
  • [7] Resonant model analysis of wireless power transfer via magnetic resonant coupling
    Zhou H.-W.
    Sun L.-P.
    Wang S.
    Liu T.-S.
    Xie P.-H.
    Dianji yu Kongzhi Xuebao, 7 (65-73): : 65 - 73
  • [8] Impedance Matching in Wireless Power Transfer
    Huang, Yong
    Shinohara, Naoki
    Mitani, Tomohiko
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (02) : 582 - 590
  • [9] Wireless Transfer of Power and Data via a Single Resonant Inductive Link
    Yu, Shiang-Hwua
    Hsieh, Yi-Chen
    Chan, Chin-Wei
    Lo, I-Fang
    Suryoatmojo, Heri
    Hwang, Lih-Tyng
    2019 IEEE 69TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2019, : 1751 - 1756
  • [10] Open-channel microfluidics via resonant wireless power transfer
    Christopher T. Ertsgaard
    Daehan Yoo
    Peter R. Christenson
    Daniel J. Klemme
    Sang-Hyun Oh
    Nature Communications, 13