Synthesis of oxidized carboxymethyl cellulose/chitosan hydrogels doped with graphene oxide for pH- and NIR-responsive drug delivery

被引:11
|
作者
Zhao, Zherui [1 ]
Gao, Jun [2 ]
Cai, Wenrong [1 ]
Li, Junyao [1 ]
Kong, Yong [1 ]
Zhou, Min [3 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[2] Changzhou Municipal Hosp Tradit Chinese Med, Dept Orthoped, Changzhou 213003, Peoples R China
[3] Changzhou 3 Peoples Hosp, Dept Hematol & Oncol, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxidized carboxymethyl cellulose; Chitosan; Hydrogels; Graphene oxide; Controlled delivery; INJECTABLE HYDROGELS; CHITOSAN; ACID;
D O I
10.1016/j.eurpolymj.2023.112437
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biological macromolecules hydrogels are synthesized via the Schiff base reaction between oxidized carboxymethyl cellulose (oxCMC) and chitosan (CS), and graphene oxide (GO) and 5-fluorouracil (5-FU) are co-doped in the oxCMC/CS hydrogels during the cross-linking process. The acylhydrazone bonds (-HC = N-) between oxCMC and CS can be easily hydrolyzed in acidic solutions, leading to the swelling of the hydrogels and facilitated delivery of 5-FU. On the other hand, the doped GO is a promising photothermal agent, and the delivery of 5-FU can also be facilitated by the generated hyperthermia upon near infrared (NIR) irradiation. Therefore, pHand NIR-responsive delivery of 5-FU from the hydrogels can be achieved. The kinetics of drug delivery indicate that the delivery of 5-FU from the hydrogels is controlled by first-order model. The drug-free carrier (oxCMC/CS/ GO) has excellent biocompatibility while the developed drug delivery system (oxCMC/CS/GO/5-FU) exhibits high cytotoxicity against human hepatoma SMMC-7721 cells.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release
    Zhou, Yang
    Zhai, Zhenghao
    Yao, Yimin
    Stant, John C.
    Landrum, Sarah L.
    Bortner, Michael J.
    Frazier, Charles E.
    Edgar, Kevin J.
    CARBOHYDRATE POLYMERS, 2023, 300
  • [2] NIR-responsive carboxymethyl-cellulose hydrogels containing thioketal-linkages for on-demand drug delivery system
    Ali, Israr
    Rizwan, Ali
    Vu, Trung Thang
    Jo, Sung -Han
    Oh, Chul-Woong
    Kim, Yong Hyun
    Park, Sang-Hyug
    Lim, Kwon Taek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 260
  • [3] pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier
    Wang, Ren
    Shou, Dan
    Lv, Ouyang
    Kong, Yong
    Deng, Linhong
    Shen, Jian
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 103 : 248 - 253
  • [4] Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system
    Rao, Ziqie
    Ge, Hongyu
    Liu, Liangling
    Zhu, Chen
    Min, Lian
    Liu, Meng
    Fan, Lihong
    Li, Dan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 107 : 1184 - 1192
  • [5] Mechanically strong and pH-responsive carboxymethyl chitosan/graphene oxide/polyacrylamide nanocomposite hydrogels with fast recoverability
    Chen, Yang
    Wang, Hongqiu
    Yu, Junrong
    Wang, Yan
    Zhu, Jing
    Hu, Zuming
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2017, 28 (16) : 1899 - 1917
  • [6] A pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery
    Wang, Lu
    Liu, Mingzhu
    Gao, Chunmei
    Ma, Liwei
    Cui, Dapeng
    REACTIVE & FUNCTIONAL POLYMERS, 2010, 70 (03): : 159 - 167
  • [7] Radiation Synthesis of pH-Sensitive Hydrogels From Carboxymethyl Cellulose/Poly(ethylene Oxide) Blends as Drug Delivery Systems
    El-Din, Horia M. Nizam
    El-Naggar, Abdel Wahab M.
    Abu-El Fadle, Faten I.
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2013, 62 (13) : 711 - 718
  • [8] Controlled pH- and glucose-responsive drug release behavior of cationic chitosan based nano-composite hydrogels by using graphene oxide as drug nanocarrier
    Zhao, Xiaowen
    Zou, Xue
    Ye, Lin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 49 : 36 - 45
  • [9] Dual pH- and Redox-responsive Chitosan Nanoparticles as Drug Delivery Carriers
    Xu, Chuang
    Wang, Xiao-ju
    Wang, Chen-hong
    Yan, Hu-sheng
    Liu, Ke-liang
    ACTA POLYMERICA SINICA, 2015, (01): : 65 - 71
  • [10] Self-Healing Hydrogels with Intrinsic Antioxidant and Antibacterial Properties Based on Oxidized Hydroxybutanoyl Glycan and Quaternized Carboxymethyl Chitosan for pH-Responsive Drug Delivery
    Jeong, Jae-pil
    Kim, Kyungho
    Oh, Eunkyung
    Park, Sohyun
    Jung, Seunho
    GELS, 2025, 11 (03)