Normalised latent measure factor models

被引:0
|
作者
Beraha, Mario [1 ]
Griffin, Jim E. [2 ]
机构
[1] Univ Torino, Dept Econ & Stat, Corso Unione Sovietica 218-Bis, I-10134 Turin, Italy
[2] UCL, Dept Stat Sci, London, England
基金
欧洲研究理事会;
关键词
comparing probability distributions; dependent random measures; latent factor models; normalised random measures; Riemannian optimisation; DIRICHLET PROCESS; REGRESSION; INFERENCE;
D O I
10.1093/jrsssb/qkad062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a methodology for modelling and comparing probability distributions within a Bayesian nonparametric framework. Building on dependent normalised random measures, we consider a prior distribution for a collection of discrete random measures where each measure is a linear combination of a set of latent measures, interpretable as characteristic traits shared by different distributions, with positive random weights. The model is nonidentified and a method for postprocessing posterior samples to achieve identified inference is developed. This uses Riemannian optimisation to solve a nontrivial optimisation problem over a Lie group of matrices. The effectiveness of our approach is validated on simulated data and in two applications to two real-world data sets: school student test scores and personal incomes in California. Our approach leads to interesting insights for populations and easily interpretable posterior inference.
引用
收藏
页码:1247 / 1270
页数:24
相关论文
共 50 条
  • [1] Supervised Hashing with Latent Factor Models
    Zhang, Peichao
    Zhang, Wei
    Li, Wu-Jun
    Guo, Minyi
    SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 173 - 182
  • [2] Latent factor models for density estimation
    Kundu, S.
    Dunson, D. B.
    BIOMETRIKA, 2014, 101 (03) : 641 - 654
  • [3] Bayesian Computation in Dynamic Latent Factor Models
    Lavine, Isaac
    Cron, Andrew
    West, Mike
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 651 - 665
  • [4] A survey of latent factor models in recommender systems
    Alshbanat, Hind I.
    Benhidour, Hafida
    Kerrache, Said
    INFORMATION FUSION, 2025, 117
  • [5] Inference on latent factor models for informative censoring
    Ungolo, Francesco
    van den Heuvel, Edwin R.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (05) : 801 - 820
  • [6] Regression-based Latent Factor Models
    Agarwal, Deepak
    Chen, Bee-Chung
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 19 - 27
  • [7] Latent Factor Regression Models for Grouped Outcomes
    Woodard, D. B.
    Love, T. M. T.
    Thurston, S. W.
    Ruppert, D.
    Sathyanarayana, S.
    Swan, S. H.
    BIOMETRICS, 2013, 69 (03) : 785 - 794
  • [8] Mining the factor zoo: Estimation of latent factor models with sufficient proxies
    Wan, Runzhe
    Li, Yingying
    Lu, Wenbin
    Song, Rui
    JOURNAL OF ECONOMETRICS, 2024, 239 (02)
  • [9] Information criteria for latent factor models: A study on factor pervasiveness and adaptivity
    Guo, Xiao
    Chen, Yu
    Tang, Cheng Yong
    JOURNAL OF ECONOMETRICS, 2023, 233 (01) : 237 - 250