GOOD REDUCTION AND CYCLIC COVERS

被引:0
|
作者
Javanpeykar, Ariyan [1 ]
Loughran, Daniel [2 ]
Mathur, Siddharth [3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55099 Mainz, Germany
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[3] Heinrich Heine Univ, Math Inst, D-40204 Dusseldorf, Germany
基金
英国工程与自然科学研究理事会;
关键词
14G05; 11G35; 14D23; TORELLI; STACKS; FINITENESS; VARIETIES; SURFACES; THEOREM;
D O I
10.1017/S1474748022000457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove finiteness results for sets of varieties over number fields with good reduction outside a given finite set of places using cyclic covers. We obtain a version of the Shafarevich conjecture for weighted projective surfaces, double covers of abelian varieties and reduce the Shafarevich conjecture for hypersurfaces to the case of hypersurfaces of high dimension. These are special cases of a general setup for integral points on moduli stacks of cyclic covers, and our arithmetic results are achieved via a version of the Chevalley-Weil theorem for stacks.
引用
收藏
页码:463 / 494
页数:32
相关论文
共 50 条