Spatial variability characterization and modelling of 2.5D woven SiO2f/ SiO2 composites

被引:2
|
作者
Wang, Hongyue [1 ,2 ]
Wang, Bing [1 ,2 ]
Fu, Maoqing [3 ,4 ]
Fang, Guodong [1 ,2 ]
Meng, Songhe [1 ,2 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sci & Technol Adv Composites Special Environm Key, Bldg A Sci Pk HIT,2 Yi Kuang St, Harbin 150001, Peoples R China
[3] Dongguan Univ Technol, Res Inst Interdisciplinary Sci, Dongguan 523808, Peoples R China
[4] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
A. Ceramic-matrix composites (CMCs); B. Mechanical properties; C. Computational modelling; C. Statistical properties/methods; FIBER-REINFORCED COMPOSITE; RANDOM-FIELD MODELS; UNCERTAINTY ANALYSIS; MECHANICAL-PROPERTIES; ELEMENT-ANALYSIS;
D O I
10.1016/j.compositesa.2023.107997
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
2.5D woven SiO2f/SiO2 composites possess geometric variabilities across scales, such as the spatial fluctuations of fibers and yarns or the random distributions of defects and pores formed in the manufacturing process, which induces a complex stress and strain distribution in material testing. In this study, a multivariate cross-correlated non-Gaussian random field based on Vine Copula is proposed to characterize the spatial variability of mechanical properties. A database of material mechanical properties is acquired by stochastic representative volume element (SRVE) simulation results which contains realistic meso-geometry characteristics and spatially random voids. Based on this database, the cross- and auto-correlations of the mechanical properties are quantified by Vine Copula and non-Gaussian random field model. In a comparison of different numerical models and experimental results, the proposed method is verified, which shows great advantages in characterizing the spatial variability and big potential abilities in damage or reliability analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Preparation and Property of 2.5D SiO2f/SiO2 Composites
    Han Shuang
    Jiang Kaihui
    Tang Junwu
    Hu Haifeng
    RARE METAL MATERIALS AND ENGINEERING, 2009, 38 : 458 - 461
  • [2] Studies on Preparation and Property of 2.5D SiO2f/SiO2 Composites
    Han, Shuang
    Jiang, Kaihui
    Tang, Junwu
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 1767 - 1770
  • [3] Damage mechanisms of 2.5D SiO2f/SiO2 woven ceramic matrix composites under compressive impact
    Zhang, Yawei
    Liu, Weikang
    Gui, Zhiwei
    Zhou, Shenhua
    Ren, Zhida
    CERAMICS INTERNATIONAL, 2023, 49 (06) : 9203 - 9218
  • [4] Kinematic modeling with Micro-CT slice auxiliary calibration for 2.5D woven SiO2f/SiO2 composites
    Wang, Hongyue
    Wang, Zhangwen
    Wang, Bing
    Fang, Guodong
    Meng, Songhe
    COMPOSITES COMMUNICATIONS, 2023, 40
  • [5] Effect of Sintering Temperature on Microstructure and Flexural Strength of 2.5D SiO2f/SiO2 Composites
    Xisheng Xia
    Jian Duan
    Bangxiao Mao
    Dakui Wang
    Guosheng Gao
    Silicon, 2024, 16 : 1847 - 1856
  • [6] Effect of Sintering Temperature on Microstructure and Flexural Strength of 2.5D SiO2f/SiO2 Composites
    Xia, Xisheng
    Duan, Jian
    Mao, Bangxiao
    Wang, Dakui
    Gao, Guosheng
    SILICON, 2024, 16 (04) : 1847 - 1856
  • [7] Prediction modelling of cutting force in rotary ultrasonic end grinding 2.5D woven SiO2f/SiO2 ceramic matrix composite
    Yao, Longxu
    Liu, Zhanqiang
    Song, Qinghua
    Wang, Bing
    Cai, Yukui
    COMPOSITE STRUCTURES, 2023, 304
  • [8] High-temperature properties of 2.5D SiO2f/SiO2 composites by sol-gel
    Yang, Xiang
    Qing, Wang
    Peng Zhi-Hang
    Feng, Cao
    CERAMICS INTERNATIONAL, 2016, 42 (11) : 12802 - 12806
  • [9] 2.5D SiO2f/SiO2复合材料制备工艺及性能研究
    韩爽
    蒋凯辉
    唐军务
    胡海峰
    稀有金属材料与工程, 2009, 38 (S2) : 458 - 461
  • [10] High-Temperature Mechanical Properties and Ablation Resistance of 2.5D Shallow Straight-Joint SiO2f/SiO2 Composites
    Xia, Xisheng
    Duan, Jian
    Mao, Bangxiao
    Wang, Dakui
    Gao, Guosheng
    SILICON, 2025,