Automatic Segmentation of Histological Images of Mouse Brains

被引:0
|
作者
Cisneros, Juan [1 ,2 ]
Lalande, Alain [1 ,3 ]
Yalcin, Binnaz [2 ]
Meriaudeau, Fabrice [1 ]
Collins, Stephan [2 ]
机构
[1] Univ Burgundy, ICMUB Lab, IFTIM, CNRS UMR 6302, F-21078 Dijon, France
[2] Univ Burgundy, INSERM Unit 1231, NeuroGeMM Lab, F-21078 Dijon, France
[3] Univ Hosp Dijon, Dept Med Imaging, F-21078 Dijon, France
关键词
anatomical phenotype; mouse brain; high resolution images; histological images; segmentation;
D O I
10.3390/a16120553
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using a high-throughput neuroanatomical screen of histological brain sections developed in collaboration with the International Mouse Phenotyping Consortium, we previously reported a list of 198 genes whose inactivation leads to neuroanatomical phenotypes. To achieve this milestone, tens of thousands of hours of manual image segmentation were necessary. The present work involved developing a full pipeline to automate the application of deep learning methods for the automated segmentation of 24 anatomical regions used in the aforementioned screen. The dataset includes 2000 annotated parasagittal slides (24,000 x 14,000 pixels). Our approach consists of three main parts: the conversion of images (.ROI to .PNG), the training of the deep learning approach on the compressed images (512 x 256 and 2048 x 1024 pixels of the deep learning approach) to extract the regions of interest using either the U-Net or Attention U-Net architectures, and finally the transformation of the identified regions (.PNG to .ROI), enabling visualization and editing within the Fiji/ImageJ 1.54 software environment. With an image resolution of 2048 x 1024, the Attention U-Net provided the best results with an overall Dice Similarity Coefficient (DSC) of 0.90 +/- 0.01 for all 24 regions. Using one command line, the end-user is now able to pre-analyze images automatically, then runs the existing analytical pipeline made of ImageJ macros to validate the automatically generated regions of interest resulting. Even for regions with low DSC, expert neuroanatomists rarely correct the results. We estimate a time savings of 6 to 10 times.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Automatic Segmentation of Hippocampus in Histological Images of Mouse Brains using Deformable Models and Random Forest
    Mesejo, Pablo
    Ugolotti, Roberto
    Cagnoni, Stefano
    Di Cunto, Ferdinando
    Giacobini, Mario
    2012 25TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2012,
  • [2] Automatic Segmentation of histological images from mouse brain
    Cisneros, Juan
    Lalande, Alain
    Yalcin, Binnaz
    Meriaudeau, Fabrice
    Collins, Stephan
    DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [3] AUTOMATIC SEGMENTATION OF MOUSE IMAGES
    Rando, Gianpaolo
    Arca, Stefano
    Casiraghi, Elena
    Campadelli, Paola
    Maggi, Adriana
    ECS10: THE10TH EUROPEAN CONGRESS OF STEREOLOGY AND IMAGE ANALYSIS, 2009, : 279 - +
  • [4] Automatic Segmentation of Bone Canals in Histological Images
    Campos Cunha Gondim, Pedro Henrique
    Justino Oliveira Limirio, Pedro Henrique
    Rocha, Flaviana Soares
    Batista, Jonas Dantas
    Dechichi, Paula
    Nassif Travencolo, Bruno Augusto
    Backes, Andre Ricardo
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) : 678 - 690
  • [5] Automatic Segmentation of Bone Canals in Histological Images
    Pedro Henrique Campos Cunha Gondim
    Pedro Henrique Justino Oliveira Limirio
    Flaviana Soares Rocha
    Jonas Dantas Batista
    Paula Dechichi
    Bruno Augusto Nassif Travençolo
    André Ricardo Backes
    Journal of Digital Imaging, 2021, 34 : 678 - 690
  • [6] AUTOMATIC MUCOUS GLANDS SEGMENTATION IN HISTOLOGICAL IMAGES
    Khvostikov, A.
    Krylov, A.
    Mikhailov, I
    Kharlova, O.
    Oleynikova, N.
    Malkov, P.
    INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2019, 42-2 (W12): : 103 - 109
  • [7] AUTOMATIC SIMULTANEOUS SEGMENTATION AND FAST REGISTRATION OF HISTOLOGICAL IMAGES
    Kybic, Jan
    Borovec, Jiri
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 774 - 777
  • [8] Automatic Detection of Histological Artifacts in Mouse Brain Slice Images
    Agarwal, Nitin
    Xu, Xiangmin
    Gopi, M.
    MEDICAL COMPUTER VISION AND BAYESIAN AND GRAPHICAL MODELS FOR BIOMEDICAL IMAGING, 2017, 10081 : 105 - 115
  • [9] AUTOMATIC BATCH-INVARIANT COLOR SEGMENTATION OF HISTOLOGICAL CANCER IMAGES
    Kothari, Sonal
    Phan, John H.
    Moffitt, Richard A.
    Stokes, Todd H.
    Hassberger, Shelby E.
    Chaudry, Qaiser
    Young, Andrew N.
    Wang, May D.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 657 - 660
  • [10] AUTOMATIC SEGMENTATION OF LUNG CARCINOMA IN HISTOLOGICAL IMAGES USING A VISUAL DICTIONARY
    Wassmer, Florian
    De Luca, Valeria
    Casanova, Ruben
    Soltermann, Alex
    Szekely, Gabor
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1037 - 1040