Rankin-Selberg Integrals and L-Functions for Covering Groups of General Linear Groups

被引:3
|
作者
Kaplan, Eyal [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
LANGLANDS QUOTIENT THEOREM; FINITE CENTRAL EXTENSIONS; AUTOMORPHIC-FORMS; WHITTAKER MODELS; EULER PRODUCTS; DISTINGUISHED REPRESENTATIONS; FOURIER COEFFICIENTS; EISENSTEIN SERIES; TENSOR PRODUCT; CLASSIFICATION;
D O I
10.1093/imrn/rnac201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let GL(c)((m)) be the covering group of GL(c), obtained by restriction from the m-fold central extension of Matsumoto of the symplectic group. We introduce a new family of Rankin-Selberg integrals for representations of GL(c)((m)) x GL(k)((m)). The construction is based on certain assumptions, which we prove here for k = 1. Using the integrals, we define local gamma-, L-, and is an element of-factors. Globally, our construction is strong in the sense that the integrals are truly Eulerian. This enables us to define the completed L-function for cuspidal representations and prove its standard functional equation.
引用
收藏
页码:13332 / 13386
页数:55
相关论文
共 50 条