QMFND: A quantum multimodal fusion-based fake news detection model for social media

被引:25
|
作者
Qu, Zhiguo [1 ,2 ]
Meng, Yunyi [2 ]
Muhammad, Ghulam [3 ]
Tiwari, Prayag [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Jiangsu, Peoples R China
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh, Saudi Arabia
[4] Halmstad Univ, Sch Informat Technol, Halmstad, Sweden
关键词
Fake news detection; Multimodal fusion; Social network; Quantum convolutional neural network;
D O I
10.1016/j.inffus.2023.102172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fake news is frequently disseminated through social media, which significantly impacts public perception and individual decision-making. Accurate identification of fake news on social media is usually time-consuming, laborious, and difficult. Although the leveraging of machine learning technologies can facilitate automated authenticity checks, the time-sensitive and voluminous nature of the data brings considerable challenge for fake news detection. To address this issue, this paper proposes a quantum multimodal fusion-based model for fake news detection (QMFND). QMFND integrates the extracted images and textual features, and passes them through a proposed quantum convolutional neural network (QCNN) to obtain discriminative results. By testing QMFND on two social media datasets, Gossip and Politifact, it is proved that its detection performance is equal to or even surpasses that of classical models. The effects of various parameters are further investigated. The QCNN not only has good expressibility and entangling capability but also has good robustness against quantum noise. The code is available at
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fake News Detection Using Stance Extracted Multimodal Fusion-Based Hybrid Neural Network
    Sengan, Sudhakar
    Vairavasundaram, Subramaniyaswamy
    Ravi, Logesh
    AlHamad, Ahmad Qasim Mohammad
    Alkhazaleh, Hamzah Ali
    Alharbi, Meshal
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (04): : 5146 - 5157
  • [2] A mutual attention based multimodal fusion for fake news detection on social network
    Guo, Ying
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15311 - 15320
  • [3] A mutual attention based multimodal fusion for fake news detection on social network
    Ying Guo
    Applied Intelligence, 2023, 53 : 15311 - 15320
  • [4] Multimodal Social Media Fake News Detection Based on Similarity Inference and Adversarial Networks
    Shan, Fangfang
    Sun, Huifang
    Wang, Mengyi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 581 - 605
  • [5] Fusion-based multimodal detection of hoaxes in social networks
    Maigrot, Cedric
    Claveau, Vincent
    Kijak, Ewa
    2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 222 - 229
  • [6] Multimodal Fake News Detection Based on Contrastive Learning and Similarity Fusion
    Li, Yan
    Jia, Kaidi
    Wang, Qiyuan
    IEEE ACCESS, 2024, 12 : 155351 - 155364
  • [7] Amharic Fake News Detection on Social Media Using Feature Fusion
    Worku, Menbere Hailu
    Woldeyohannis, Michael Melese
    Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 2022, 411 LNICST : 468 - 479
  • [8] Multimodal fake news detection on social media: a survey of deep learning techniques
    Carmela Comito
    Luciano Caroprese
    Ester Zumpano
    Social Network Analysis and Mining, 13
  • [9] Multimodal fake news detection on social media: a survey of deep learning techniques
    Comito, Carmela
    Caroprese, Luciano
    Zumpano, Ester
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [10] Multimodal Data Fusion Framework For Fake News Detection
    Athira, A. B.
    Tiwari, Abhishek
    Kumar, S. D. Madhu
    Chacko, Anu Mary
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,