On the Diophantine equation (p + 2)x ? p y = z 2 , where p is prime and p ? 5 (mod 24)

被引:0
|
作者
Tadee, Suton [1 ]
Laomalaw, Napalai [1 ]
机构
[1] Thepsatri Rajabhat Univ, Dept Math, Fac Sci & Technol, Lopburi 15000, Thailand
关键词
Diophantine equation; Mihailescu's Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that (0,0, 0) is the unique non-negative integer solution (x, y, z) for the Diophantine equation (p + 2)(x) - p(y) = z(2), where p is prime and p= 5 (mod 24).
引用
收藏
页码:149 / 152
页数:4
相关论文
共 50 条
  • [1] On the Diophantine Equation 4(x) - p(y) = 3z(2) where p is a Prime
    Tiongson Rabago, Julius Fergy
    THAI JOURNAL OF MATHEMATICS, 2018, 16 (03): : 643 - 650
  • [2] DIOPHANTINE EQUATION P2X4+3PX2Y2+Y4=Z2, P AN ODD PRIME
    SINHA, TN
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1975, 79 (1-2): : 41 - 44
  • [3] EQUATION X2P+Y2P=Z2P
    TERJANIAN, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (16): : 973 - 975
  • [4] On the Diophantine Equation 22nx - py = z2, where p is a prime
    Orosram, Wachirarak
    Unchai, Ariya
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 447 - 451
  • [5] On the Diophantine equation (5pn2 -1)x + (p(p-5)n2 +1)y = (pn)z
    Alahmadi, Adel
    Luca, Florian
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 3 - 12
  • [6] On the diophantine equation x(2)-p(m)=+/-y(n)
    Bugeaud, Y
    ACTA ARITHMETICA, 1997, 80 (03) : 213 - 223
  • [7] THE EQUATION X2P + Y2P + Z2P = W2P
    POWELL, BJ
    FOSTER, LL
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (06): : 445 - 445
  • [8] The characterization of PSL(2, p) (p ≡ ±5 (mod 24))
    Guan, Yunfei
    Yan, Quanfu
    Shen, Zhencai
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (07) : 2769 - 2773
  • [9] On the Diophantine Equations (p +a)x -py =z2 and px- (p +a)y =z2
    Tadee, Suton
    Wannaphan, Chantana
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (02): : 459 - 465
  • [10] The Complete Set of Non-negative Integer Solutions for the Diophantine Equation (pq)2x+py = z2, where p, q, x, y, z are non-negative integers with p prime and p does not divide q
    Pintoptang, Umarin
    Tadee, Suton
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2023, 18 (02): : 205 - 209