W-Net: Convolutional neural network for segmenting remote sensing images by dual path semantics

被引:2
|
作者
Liu, Guangjie [1 ]
Wang, Qi [1 ]
Zhu, Jinlong [1 ]
Hong, Haotong [2 ]
机构
[1] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun, Jilin, Peoples R China
[2] FAW Mold Mfg Co Ltd, Changchun, Jilin, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 07期
关键词
DEEP; SEGMENTATION; CONNECTIONS; FEATURES;
D O I
10.1371/journal.pone.0288311
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the latest research progress, deep neural networks have been revolutionized by frameworks to extract image features more accurately. In this study, we focus on an attention model that can be useful in deep neural networks and propose a simple but strong feature extraction deep network architecture, W-Net. The architecture of our W-Net network has two mutually independent path structures, and it is designed with the following advantages. (1) There are two independent effective paths in our proposed network structure, and the two paths capture more contextual information from different scales in different ways. (2) The two paths acquire different feature images, and in the upsampling approach, we use bilinear interpolation thus reducing the feature map distortion phenomenon and integrating the different images processed. (3) The feature image processing is at a bottleneck, and a hierarchical attention module is constructed at the bottleneck by reclassifying after the channel attention module and the spatial attention module, resulting in more efficient and accurate processing of feature images. During the experiment, we also tested iSAID, a massively high spatial resolution remote sensing image dataset, with further experimental data comparison to demonstrate the generality of our method for remote sensor image segmentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] W-net: A Convolutional Neural Network for Retinal Vessel Segmentation
    Reyes-Figueroa, Alan
    Rivera, Mariano
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 355 - 368
  • [2] Multiscale Cloud Detection in Remote Sensing Images Using a Dual Convolutional Neural Network
    Luotamo, Markku
    Metsamaki, Sari
    Klami, Arto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 4972 - 4983
  • [3] Double U-Net (W-Net): A change detection network with two heads for remote sensing imagery
    Wang, Xue
    Yan, Xulan
    Tan, Kun
    Pan, Chen
    Ding, Jianwei
    Liu, Zhaoxian
    Dong, Xinfeng
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [4] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Muhammad Alam
    Jian-Feng Wang
    Cong Guangpei
    LV Yunrong
    Yuanfang Chen
    Mobile Networks and Applications, 2021, 26 : 200 - 215
  • [5] Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images
    Alam, Muhammad
    Wang, Jian-Feng
    Guangpei, Cong
    Yunrong, L., V
    Chen, Yuanfang
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01): : 200 - 215
  • [6] CGC-NET: Aircraft Detection in Remote Sensing Images Based on Lightweight Convolutional Neural Network
    Wang, Ting
    Zeng, Xiaodong
    Cao, Changqing
    Li, Wei
    Feng, Zhejun
    Wu, Jin
    Yan, Xu
    Wu, Zengyan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2805 - 2815
  • [7] DPSDA-Net: Dual-Path Convolutional Neural Network with Strip Dilated Attention Module for Road Extraction from High-Resolution Remote Sensing Images
    Zhao, Like
    Ye, Linfeng
    Zhang, Mi
    Jiang, Huawei
    Yang, Zhen
    Yang, Mingwang
    REMOTE SENSING, 2023, 15 (15)
  • [8] Classification of Optical Remote Sensing Images Based on Convolutional Neural Network
    Li, Yibo
    Liu, Mingjun
    Zhang, Senyue
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 801 - 806
  • [9] Automatic Raft Labeling for Remote Sensing Images via Dual-Scale Homogeneous Convolutional Neural Network
    Shi, Tianyang
    Xu, Qizhi
    Zou, Zhengxia
    Shi, Zhenwei
    REMOTE SENSING, 2018, 10 (07)
  • [10] Optimal Deep Convolutional Neural Network for Vehicle Detection in Remote Sensing Images
    Alshahrani, Saeed Masoud
    Alotaibi, Saud S.
    Al-Otaibi, Shaha
    Mousa, Mohamed
    Hilal, Anwer Mustafa
    Abdelmageed, Amgad Atta
    Motwakel, Abdelwahed
    Eldesouki, Mohamed I.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3117 - 3131