3D-Bioprinted Phantom with Human Skin Phototypes for Biomedical Optics

被引:22
|
作者
Yim, Wonjun [1 ]
Zhou, Jiajing [2 ]
Sasi, Lekshmi [2 ]
Zhao, Jiayu [2 ]
Yeung, Justin [3 ]
Cheng, Yong [2 ]
Jin, Zhicheng [2 ]
Johnson, Wade [2 ]
Xu, Ming [2 ]
Palma-Chavez, Jorge [2 ]
Fu, Lei [2 ]
Qi, Baiyan [1 ]
Retout, Maurice [2 ]
Shah, Nisarg J. J. [2 ,4 ]
Bae, Jinhye [1 ,2 ,4 ]
Jokerst, Jesse V. [1 ,2 ,5 ]
机构
[1] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Chem Engn Program, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Dept Radiol, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
3D bioprinting; artificial skins; bioinspired materials; biophotonic devices; MELANOSOME DISTRIBUTION; MELANIN; CANCER; PARTICLE; KERATINOCYTES; SYSTEMS; SURFACE;
D O I
10.1002/adma.202206385
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D-bioprinted skin-mimicking phantoms with skin colors ranging across the Fitzpatrick scale are reported. These tools can help understand the impact of skin phototypes on biomedical optics. Synthetic melanin nanoparticles of different sizes (70-500 nm) and clusters are fabricated to mimic the optical behavior of melanosome. The absorption coefficient and reduced scattering coefficient of the phantoms are comparable to real human skin. Further the melanin content and distribution in the phantoms versus real human skins are validated via photoacoustic (PA) imaging. The PA signal of the phantom can be improved by: 1) increasing melanin size (3-450-fold), 2) increasing clustering (2-10.5-fold), and 3) increasing concentration (1.3-8-fold). Then, multiple biomedical optics tools (e.g., PA, fluorescence imaging, and photothermal therapy) are used to understand the impact of skin tone on these modalities. These well-defined 3D-bioprinted phantoms may have value in translating biomedical optics and reducing racial bias.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 3D-Bioprinted Phantom with Human Skin Phototypes for Biomedical Optics (vol 35, 2206385, 2023)
    Yim, Wonjun
    Zhou, Jiajing
    Sasi, Lekshmi
    Zhao, Jiayu
    Yeung, Justin
    Cheng, Yong
    Jin, Zhicheng
    Johnson, Wade
    Xu, Ming
    Palma-Chavez, Jorge
    Fu, Lei
    Qi, Baiyan
    Retout, Maurice
    Shah, Nisarg J.
    Bae, Jinhye
    Jokerst, Jesse V.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [2] 3D-Bioprinted Constructs that Breathe
    Correia, Clara R.
    Mano, Joao F.
    MATTER, 2021, 4 (01) : 15 - 17
  • [3] Development of an immunocompetent 3D-bioprinted skin-on-chip model
    Kleiter, Alexeja
    Zelle-Rieser, Claudia
    Kaiser, Nora
    Hagenbuchner, Judith
    Ausserlechner, Michael
    Stoitzner, Patrizia
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 284 - 284
  • [4] Biomimetic 3D-bioprinted skin scaffolds for wound healing and regeneration
    Patrulea, Viorica
    Fuenteslopez, Carla V.
    Ye, Hua
    TISSUE ENGINEERING PART A, 2022, 28 : 561 - 561
  • [5] A 3D-Bioprinted Multiple Myeloma Model
    Wu, Di
    Wang, Zongyi
    Li, Jun
    Song, Yan
    Perez, Manuel Everardo Mondragon
    Wang, Zixuan
    Cao, Xia
    Cao, Changliang
    Maharjan, Sushila
    Anderson, Kenneth C.
    Chauhan, Dharminder
    Zhang, Yu Shrike
    ADVANCED HEALTHCARE MATERIALS, 2022, 11 (07)
  • [6] First-in-Human 3D-Bioprinted Living Tissue Implant
    不详
    AMERICAN JOURNAL OF TRANSPLANTATION, 2022, 22 (09) : 2128 - 2128
  • [7] 3D-bioprinted human tissue and the path toward clinical translation
    Bliley, Jacqueline M.
    Shiwarski, Daniel J.
    Feinberg, Adam W.
    SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (666)
  • [8] 3D-bioprinted tracheal reconstruction: an overview
    Frejo, Lidia
    Grande, Daniel A.
    Bioelectronic Medicine, 2019, 5 (01)
  • [9] Evaluation of 3D-bioprinted skin scaffolds in mice along with gold nanoparticle exposure
    Wang, Yi
    Ma, Xin
    Wu, Xu
    Wang, Shuaideng
    Peng, Peng
    Tang, Guozhang
    Qin, Xinya
    Wang, Xinmeng
    Wang, Chenwei
    Zhou, Jiangning
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (06) : 430 - 443
  • [10] Shape Fidelity of 3D-Bioprinted Biodegradable Patches
    Temirel, Mikail
    Hawxhurst, Christopher
    Tasoglu, Savas
    MICROMACHINES, 2021, 12 (02)