Low-Light Image Enhancement via Regularized Gaussian Fields Model

被引:4
|
作者
Yi, Xiang [1 ]
Min, Chaobo [1 ]
Shao, Mengchen [1 ]
Zheng, Huijie [1 ]
Lv, Qingfeng [1 ]
机构
[1] Hohai Univ, Sch Internet Things Engn, Changzhou 213022, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinex model; Denoising; Detail preservation; Low-light enhancement; RELATION EXTRACTION;
D O I
10.1007/s11063-023-11407-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinex decomposition is a prevalent solution to low-light image enhancement. It is usually considered as a constrained optimization problem. To improve enhancement performance, the Retinex model is incorporated with various prior constraints, which make the optimization process complicated and difficult. In this paper, a method of low-light enhancement with regularized Gaussian Fields (RGF) model is proposed to address this issue. Firstly, we construct an RGF-based optimization model to formulate simultaneous reflectance and illumination estimation as an unconstrained optimization problem. Therefore, Retinex decomposition in RGF model can be solved by gradient descent techniques and has superiority on computational convenience. Then, to suppress noise and preserve detail in the estimated reflectance, the detail-preserving model based on Gaussian total variation (GTV) is established. The qualitative and quantitative comparisons on several public datasets demonstrate the superiority of our method over several state-of-the-arts in terms of enhancement efficiency and quality.
引用
收藏
页码:12017 / 12037
页数:21
相关论文
共 50 条
  • [1] Low-Light Image Enhancement via Regularized Gaussian Fields Model
    Xiang Yi
    Chaobo Min
    Mengchen Shao
    Huijie Zheng
    Qingfeng Lv
    Neural Processing Letters, 2023, 55 (9) : 12017 - 12037
  • [2] Low-Light Image Enhancement via Weighted Low-Rank Tensor Regularized Retinex Model
    Yang, Weipeng
    Gao, Hongxia
    Zou, Wenbin
    Liu, Tongtong
    Huang, Shasha
    Ma, Jianliang
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 767 - 775
  • [3] Low-Light Image Enhancement via Implicit Priors Regularized Illumination Optimization
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 944 - 953
  • [4] Learning shrinkage fields for low-light image enhancement via Retinex
    Wu Q.
    Wang R.
    Ren W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (09): : 1711 - 1720
  • [5] Low-Light Image Enhancement via the Absorption Light Scattering Model
    Wang, Yun-Fei
    Liu, He-Ming
    Fu, Zhao-Wang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5679 - 5690
  • [6] An Effective Low-Light Image Enhancement Algorithm via Fusion Model
    Wang, Ya-Min
    Sun, Zhan-Li
    Han, Fu-Qiang
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 388 - 396
  • [7] Low-light Image Enhancement via Extend Atmospheric Scattering Model
    Wang Manli
    Chen Bingbing
    Zhang Changsen
    ACTA PHOTONICA SINICA, 2023, 52 (06)
  • [8] LOW-LIGHT IMAGE ENHANCEMENT VIA FEATURE RESTORATION
    Yang, Yang
    Zhang, Yonghua
    Guo, Xiaojie
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2440 - 2444
  • [9] Low-Light Image Enhancement via Unsupervised Learning
    He, Wenchao
    Liu, Yutao
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT I, 2024, 14473 : 232 - 243
  • [10] Low-Light Image Enhancement via Poisson Noise Aware Retinex Model
    Kong, Xiang-Yu
    Liu, Lei
    Qian, Yun-Sheng
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1540 - 1544