有限信域观点动力学建模和动态分析

被引:2
作者
张江波 [1 ]
洪奕光 [2 ]
机构
[1] 西南石油大学理学院
[2] 中科院数学与系统科学研究院系统控制重点实验室
关键词
观点动力学; 有限信域模型; 收敛性; 同步性; 波动性;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
介绍了有限信域观点动力学的一些研究成果.首先介绍了几类经典的观点动力学模型;其次重点介绍两类有限信域观点动力学模型,即Deffuant-Weisbuch(DW)模型和Hegselmann-Krause(HK)模型,尤其是这两类模型不同种类的推广模型;随后我们介绍相关的观点收敛性以及改进的有限信域观点动力学模型和相关的收敛性结果,观点达到同步性的模型条件及参数条件,并介绍了存在固执个体情形下观点具有波动性的观点动力学模型以及相关的理论结果.
引用
收藏
页码:319 / 335
页数:17
相关论文
共 13 条
[1]  
Convergence Rate of the Asymmetric Deffuant-Weisbuch Dynamics[J]. ZHANG Jiangbo,CHEN Ge.Journal of Systems Science & Complexity. 2015(04)
[2]  
The noisy Hegselmann-Krause model for opinion dynamics[J] . Miguel Pineda,Raúl Toral,Emilio Hernández-García.The European Physical Journal B . 2013 (12)
[3]  
Opinion consensus of modified Hegselmann–Krause models[J] . Yuecheng Yang,Dimos V. Dimarogonas,Xiaoming Hu.Automatica . 2013
[4]  
Opinion evolution analysis for short-range and long-range Deffuant–Weisbuch models[J] . Jiangbo Zhang,Yiguang Hong.Physica A: Statistical Mechanics and its Applicat . 2013 (21)
[5]   Opinion Fluctuations and Disagreement in Social Networks [J].
Acemoglu, Daron ;
Como, Giacomo ;
Fagnani, Fabio ;
Ozdaglar, Asuman .
MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (01) :1-27
[6]  
Noisy continuous-opinion dynamics[J] . M Pineda,R Toral,E Hernández-García.Journal of Statistical Mechanics: Theory and Expe . 2009 (08)
[7]   Opinion dynamics on directed small-world networks [J].
Jiang, L. -L. ;
Hua, D. -Y. ;
Zhu, J. -F. ;
Wang, B. -H. ;
Zhou, T. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (02) :251-255
[8]  
Randomized gossip algorithms[J] . Stephen Boyd,Arpita Ghosh,Balaji Prabhakar,Devavrat Shah.IEEE/ACM Transactions on Networking (TON) . 2006 (SI)
[9]   A stabilization theorem for dynamics of continuous opinions [J].
Lorenz, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 355 (01) :217-223
[10]   Minority opinion spreading in random geometry [J].
Galam, S .
EUROPEAN PHYSICAL JOURNAL B, 2002, 25 (04) :403-406