CH4/H2O/H2辅助热催化CO2转化机制

被引:0
|
作者
马丹妮 [1 ]
颜天天 [1 ]
张烁 [1 ]
GUENE LOUGOU Bachirou [1 ]
张昊 [2 ]
潘如明 [1 ]
帅永 [1 ]
机构
[1] 哈尔滨工业大学能源科学与工程学院
[2] 哈尔滨工业大学电气工程及自动化学院
基金
国家重点研发计划;
关键词
热化学; CO2催化转化; 可再生能源; 太阳能燃料; 绿色化工;
D O I
10.20078/j.eep.20230706
中图分类号
X701 [废气的处理与利用];
学科分类号
摘要
随着热化学技术及相关反应机制认知的不断进步,二氧化碳回收转化为高附加值燃料或其他化工产品的清洁能源技术正逐步走向成熟。同时,因社会工业进步及人类生产活动急剧增加了大气中的二氧化碳浓度,且已远超地球正常发展的浓度阈值,这使得基于二氧化碳转化的零碳高效可再生清洁能源技术成为世界各国为应对全球能源与环境问题亟待实现的关键技术。鉴于二氧化碳热催化转化的基本原理、关键材料和反应系统的相关研究对于推动该技术的工业化进程有着至关重要的作用,本文报道了二氧化碳热催化转化机制相关的最新进展,重点阐述了对热催化过程具有辅助作用的活性气体(包括H2O、CH4和H2)在实现高水平二氧化碳回收转换与高效合成气生产方面的催化机制,其核心体现在优化的反应动力学与温和条件下的热力学优势。
引用
收藏
页码:23 / 35
页数:13
相关论文
共 105 条
  • [1] Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions.[J].Guene Lougou Bachirou;Wu Lianxuan;Ma Danni;Geng Boxi;Jiang Boshu;Han Donmei;Zhang Hao;Łapka Piotr;Shuai Yong.Energy.2023,
  • [2] Design of gas-liquid two-phase separation device with application in solar hydrogen production system.[J].Geng Boxi;Guene Lougou Bachirou;Shuai Yong;Zhang Hao;Pan Qinghui;Han Dongmei;Jiang Boshu;Wu Lianxuan;Wang Ziyue.Renewable and Sustainable Energy Reviews.2023,
  • [3] Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide.[J].Zhang Hao;Zhang Xiaomi;Yang Dazhi;Shuai Yong;Lougou Bachirou Guene;Pan Qinghui;Wang Fuqiang.Energy Conversion and Management.2023,
  • [4] Experimentally validated numerical model of multi-spectral bands radiative transport in solar receiver/reactor with photo-active porous absorber reacting media.[J].Wu Lianxuan;Guene Lougou Bachirou;Jiang Boshu;Zhang Hao;Guo Yanming;Geng Boxi;Yan TianTian;Łapka Piotr;Shuai Yong.Energy Conversion and Management.2023,
  • [5] Preparation and solar thermochemical properties analysis of NiFe2O4SiC/ @Si3N4 for high-performance CO2-splitting.[J].Jiang Boshu;Guene Lougou Bachirou;Zhang Hao;Geng Boxi;Wu Lianxuan;Shuai Yong.Applied Energy.2022, @
  • [6] Combined heat and mass transfer analysis of solar reactor integrating porous reacting media for water and carbon dioxide splitting.[J].Shuai Yong;Guene Lougou Bachirou;Zhang Hao;Han Dongmei;Jiang Boshu;Zhao Jiupeng;Huang Xing.Solar Energy.2022,
  • [7] Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalysts.[J].Witoon Thongthai;Numpilai Thanapha;Nijpanich Supinya;Chanlek Narong;Kidkhunthod Pinit;Cheng Chin Kui;Ng Kim Hoong;Vo Dai-Viet N.;Ittisanronnachai Somlak;Wattanakit Chularat;Chareonpanich Metta;Limtrakul Jumras.Chemical Engineering Journal.2022, P3
  • [8] Regulating the Interfacial Synergy of Ni/Ga2O3 for CO2 Hydrogenation toward the Reverse Water-Gas Shift Reaction
    Gong, Jin
    Chu, Mingyu
    Guan, Wenhao
    Liu, Yu
    Zhong, Qixuan
    Cao, Muhan
    Xu, Yong
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (26) : 9448 - 9455
  • [9] What Are the Best Active Sites for CO2 Methanation over Ni/CeO2?
    Tada, Shohei
    Nagase, Hironori
    Fujiwara, Naoya
    Kikuchi, Ryuji
    [J]. ENERGY & FUELS, 2021, 35 (06) : 5241 - 5251
  • [10] Crystallographic Orientation Dependence of Surface Segregation and Alloying on PdCu Catalysts for CO<sub>2</sub> Hydrogenation..[J].Pielsticker Lukas;Zegkinoglou Ioannis;Han ZhongKang;Navarro Juan J;Kunze Sebastian;Karslıoğlu Osman;Levchenko Sergey V;Roldan Cuenya Beatriz.The journal of physical chemistry letters.2021, 10