对任意正整数a,设S(a)为a的Smarandache函数,对任意正整数r和b,设a(r,b)是b的前r位数字所组成的数。2001年,Bercze提出了一个问题:如何确定方程a2(k+2,s(n))=a2(k+1,s(n))+a2(k,s(n))n,k∈N的所有解。更进一步,Bercze又提出另一个问题:设β(r,b)是b的后r位数字所组成的数,如何确定2β(k+2,s(n))=β2(k+1,s(n))+β2(k,s(n))的所有正整数解(n,k)。运用丢番图方程的相关知识,完整地解决了Bercze所提出的两个问题,即证明了方程(1)没有正整数解(n,k),同时确定了方程(2)的所有正整数解(n,k)。