基于最小二乘支持向量机的天然气负荷预测

被引:45
作者
刘涵
刘丁
郑岗
梁炎明
宋念龙
机构
[1] 西安理工大学自动化与信息工程学院,西安理工大学自动化与信息工程学院,西安理工大学自动化与信息工程学院,西安理工大学自动化与信息工程学院,西安理工大学自动化与信息工程学院陕西西安,陕西西安,陕西西安,陕西西安,陕西西安
关键词
结构风险最小化; 支持向量机; 最小二乘支持向量机; 支持向量回归; 负荷预测;
D O I
暂无
中图分类号
TP181 [自动推理、机器学习];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning techniques are finding more and more applications in the field of load forecasting. A novel regression technique,called support vector machine (SVM),based on the statistical learning theory is applied in this paper for the prediction of natural gas demands. Least squares support vector machine (LS-SVM) is a kind of SVM that has different cost function with respect to SVM. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization supported by conventional regression techniques. The prediction result shows that the prediction accuracy of SVM is better than that of neural network. Thus,SVM appears to be a very promising prediction tool. The software package NGPSLF based on SVM prediction has been put into practical business application.
引用
收藏
页码:828 / 832
页数:5
相关论文
共 13 条
[1]  
IntroductiontoStatisticalLearningTheoryandSupportVectorMachines. ZhangXuegong. ActaAutomationSinica . 2000
[2]  
FaceDetectionBasedonTemplateMatchingandSupportVectorMachines. LiangLuhong,AiHaizhou,ZhangBo. ChineseJournalofComputer . 2002
[3]  
NonlinearBlindSourceSeparationUsingKernels. DominiqueM,AlistairB. IEEETransOnNeuralNetworks . 2003
[4]  
PredictingTimeSerieswithSupportVectorMachines. MullerKR,SmolaAJ,RatschG,ScholkopfB,KohlmorgenJ. ProceedingsofICANN’’97 . 1997
[5]  
Short Term Gas Demand Forecasting. Tony Perchard,Clive Whiteh. Proceedingsofthe32ndAnnualMeetingonPipelineSimulationInterestGroup . 2000
[6]  
LeastSquaresSupportVectorMachineClassifiers. SuykensJAK,VandewalleJ. NeuralProcessingLetter . 1999
[7]  
Vapnik,V. The Nature of Statistical Learning Theory . 1999
[8]  
ShortTermLoadForecastingUsingaSelf supervisedAdaptiveNeuralNetwork. YooH,PimmelRL. IEEETrans onPowerSystems . 1999
[9]  
ANNSTLF ArtificialNeuralNetworkShort termLoadForecasterGenerationThree. KhotanzadA,AfkhamiRohaniR,MaratukukulamD. IEEETrans onPowerSystems . 1998
[10]  
ApplicationofTimeSeriesAnalysistoLoadForecastofNaturalGasinTown. JiaoWenling,JinJiabin,LianLeming,YanMingqing. JournalofHarbinUniversityofC E &Architecture . 2001