Nonlinear identification of systems with parametric excitation

被引:0
|
作者
YE Min 1
2 College of Mechanical Engineering
机构
基金
中国国家自然科学基金;
关键词
nonlinear system identification; incremental harmonic balance; parameter excitation; nonlinear systems;
D O I
暂无
中图分类号
TB53 [振动、噪声及其控制];
学科分类号
083002 ; 120402 ;
摘要
In this paper, the incremental harmonic balance nonlinear identification (IHBNID) is presented for modelling and parametric identification of nonlinear systems. The effects of harmonic balance nonlinear identification (HBNID) and IHBNID are also studied and compared by using numerical simulation. The effectiveness of the IHBNID is verified through the Mathieu-Duffing equation as an example. With the aid of the new method, the derivation procedure of the incremental harmonic balance method is simplified. The system responses can be represented by the Fourier series expansion in complex form. By keeping several lower-order primary harmonic coefficients to be constant, some of the higher-order harmonic coefficients can be self-adaptive in accordance with the residual errors. The results show that the IHBNID is highly efficient for computation, and excels the HBNID in terms of computation accuracy and noise resistance.
引用
收藏
页码:2080 / 2089
页数:10
相关论文
共 50 条
  • [1] Nonlinear identification of systems with parametric excitation
    Ye Min
    Dou SuGuang
    Zhang Wei
    Zeng ZhiGang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (08) : 2080 - 2089
  • [2] Nonlinear identification of systems with parametric excitation
    YE Min DOU SuGuang ZHANG Wei ZENG ZhiGang School of Aeronautics and Astronautics Zhejiang University Hangzhou China College of Mechanical Engineering Beijing University of Technology Beijing China
    Science China(Technological Sciences), 2011, 54 (08) : 2080 - 2089
  • [3] Nonlinear identification of systems with parametric excitation
    Min Ye
    SuGuang Dou
    Wei Zhang
    ZhiGang Zeng
    Science China Technological Sciences, 2011, 54 : 2080 - 2089
  • [4] Parametric Identification of Nonlinear Systems Using Chaotic Excitation
    Narayanan, M. D.
    Narayanan, S.
    Padmanabhan, Chandramouli
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2007, 2 (03): : 225 - 231
  • [5] On Using a Strong High-Frequency Excitation for Parametric Identification of Nonlinear Systems
    Abusoua, Abdraouf
    Daqaq, Mohammed F.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2017, 139 (05):
  • [6] Bifurcation problems of nonlinear systems with parametric excitation
    Chen, YS
    Xu, J
    DOKLADY AKADEMII NAUK, 1997, 357 (03) : 313 - 316
  • [7] Identification of nonlinear oscillator with parametric white noise excitation
    Rüdinger, F
    Krenk, S
    NONLINEAR DYNAMICS, 2004, 36 (2-4) : 379 - 403
  • [8] Identification of Nonlinear Oscillator with Parametric White Noise Excitation
    Finn Rüdinger
    Steen Krenk
    Nonlinear Dynamics, 2004, 36 : 379 - 403
  • [9] Parametric identification of nonlinear hysteretic systems
    Y. Rochdi
    F. Giri
    F. Ikhouane
    F. Z. Chaoui
    J. Rodellar
    Nonlinear Dynamics, 2009, 58 : 393 - 404
  • [10] Parametric identification of nonlinear hysteretic systems
    Rochdi, Y.
    Giri, F.
    Ikhouane, F.
    Chaoui, F. Z.
    Rodellar, J.
    NONLINEAR DYNAMICS, 2009, 58 (1-2) : 393 - 404