Loop Subdivision Surface Based Progressive Interpolation

被引:13
|
作者
雍俊海 [1 ]
机构
[1] School of Software,Tsinghua University
基金
中国国家自然科学基金;
关键词
geometric modeling; Loop subdivision surface; progressive interpolation;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条
  • [1] Loop Subdivision Surface Based Progressive Interpolation
    Fu-Hua (Frank) Cheng
    Feng-Tao Fan
    Shu-Hua Lai
    Cong-Lin Huang
    Jia-Xi Wang
    Jun-Hai Yong
    Journal of Computer Science and Technology, 2009, 24 : 39 - 46
  • [2] Loop Subdivision Surface Based Progressive Interpolation
    Cheng, Fu-Hua
    Fan, Feng-Tao
    Lai, Shu-Hua
    Huang, Cong-Lin
    Wang, Jia-Xi
    Yong, Jun-Hai
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2009, 24 (01) : 39 - 46
  • [3] Adaptive fitting algorithm of progressive interpolation for Loop subdivision surface
    Zhang, Li
    She, Xiangrong
    Ge, Xianyu
    Tan, Jieqing
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (11):
  • [4] Progressive interpolation using loop subdivision surfaces
    Cheng, Fuhua
    Fan, Fengtao
    Lai, Shuhua
    Huang, Conglin
    Wang, Jiaxi
    Yong, Junhai
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 526 - +
  • [5] Weighted progressive interpolation of Loop subdivision surfaces
    Deng, Chongyang
    Ma, Weiyin
    COMPUTER-AIDED DESIGN, 2012, 44 (05) : 424 - 431
  • [6] Local progressive interpolation for subdivision surface fitting
    Zhao, Yu
    Lin, Hongwei
    Bao, Hujun
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2012, 49 (08): : 1699 - 1707
  • [7] HSS-progressive interpolation for Loop and Catmull-Clark Subdivision Surfaces
    Hamza, Yusuf Fatihu
    Hamza, Mukhtar Fatihu
    Rababah, Abedallah
    Rano, Sadiya Ali
    SCIENTIFIC AFRICAN, 2024, 23
  • [8] Conjugate-Gradient Progressive-Iterative Approximation for Loop and Catmull-Clark Subdivision Surface Interpolation
    Yusuf Fatihu Hamza
    Hong-Wei Lin
    Journal of Computer Science and Technology, 2022, 37 : 487 - 504
  • [9] Conjugate-Gradient Progressive-Iterative Approximation for Loop and Catmull-Clark Subdivision Surface Interpolation
    Hamza, Yusuf Fatihu
    Lin, Hong-Wei
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2022, 37 (02) : 487 - 504
  • [10] Application of Interpolation Loop Surface Subdivision Algorithm in Free Surface Reconstruction of Surfacing
    Hong B.
    Li P.
    Wu H.
    Chen S.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (08): : 139 - 144