A Difference Scheme with Intrinsic Parallelism for Fractional Diffusion-wave Equation with Damping

被引:1
|
作者
Li-Fei WU [1 ]
Xiao-Zhong YANG [1 ]
Min LI [1 ]
机构
[1] School of Mathematics and Physics, North China Electric Power University
基金
中央高校基本科研业务费专项资金资助;
关键词
time fractional diffusion-wave equation with damping; intrinsic parallelism; ASC-N scheme; stability; parallel computing;
D O I
暂无
中图分类号
O241.3 [插值法];
学科分类号
摘要
Anomalous diffusion is a widespread physical phenomenon, and numerical methods of fractional diffusion models are of important scientific significance and engineering application value. For time fractional diffusion-wave equation with damping, a difference(ASC-N, alternating segment Crank-Nicolson) scheme with intrinsic parallelism is proposed. Based on alternating technology, the ASC-N scheme is constructed with four kinds of Saul’yev asymmetric schemes and Crank-Nicolson(C-N) scheme. The unconditional stability and convergence are rigorously analyzed. The theoretical analysis and numerical experiments show that the ASC-N scheme is effective for solving time fractional diffusion-wave equation.
引用
收藏
页码:602 / 616
页数:15
相关论文
共 50 条
  • [1] A Difference Scheme with Intrinsic Parallelism for Fractional Diffusion-wave Equation with Damping
    Wu, Li-Fei
    Yang, Xiao-Zhong
    Li, Min
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 602 - 616
  • [2] A Difference Scheme with Intrinsic Parallelism for Fractional Diffusion-wave Equation with Damping
    Li-Fei Wu
    Xiao-Zhong Yang
    Min Li
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 602 - 616
  • [3] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [4] A novel finite difference discrete scheme for the time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 17 - 30
  • [5] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305
  • [6] A NOVEL FINITE DIFFERENCE SCHEME FOR TIME FRACTIONAL DIFFUSION-WAVE EQUATION WITH SINGULAR KERNEL
    Bouguetof, K.
    Haouam, K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 681 - 688
  • [7] An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation
    An, Wenjing
    Zhang, Xingdong
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 354 - 369
  • [8] The analytical solution and numerical solution of the fractional diffusion-wave equation with damping
    Chen, J.
    Liu, F.
    Anh, V.
    Shen, S.
    Liu, Q.
    Liao, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1737 - 1748
  • [9] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720
  • [10] Two finite difference schemes for time fractional diffusion-wave equation
    Jianfei Huang
    Yifa Tang
    Luis Vázquez
    Jiye Yang
    Numerical Algorithms, 2013, 64 : 707 - 720