多尺度时空上下文目标跟踪

被引:3
|
作者
李泽仁
纪峰
常霞
吴仰玉
机构
[1] 北方民族大学数学与信息科学学院
关键词
目标跟踪; 时空上下文; 多尺度;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
相关滤波器在视觉目标跟踪中得到了广泛应用,针对复杂场景下目标跟踪容易出现跟踪漂移的问题,以及现有多尺度跟踪算法计算量大的问题,本文提出一种实时的多尺度目标跟踪方法。首先由时空上下文模型输出目标位置置信图完成目标定位,再在尺度空间上训练相关滤波器完成目标尺度估计,最后基于目标位置和尺度提出了一种新的时空上下文模型更新机制,避免了模型更新错误。实验表明:该方法在尺度变化、局部遮挡、目标姿态变化等情况下均能完成鲁棒跟踪,跟踪正确率较原始时空上下文跟踪算法提高了38.4%。
引用
收藏
页码:535 / 540
页数:6
相关论文
共 11 条
  • [1] Real-time visual tracking using compressive sensing. Li H,Shen C,Shi Q. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2011
  • [2] Video Tracking:Theory and Practice. Emilio M. . 2012
  • [3] Incremental learning for robust visual tracking. Ross D,Lim J,Lin R,et al. International Conference on Computer Vision . 2008
  • [4] Fast visual tracking via dense spatio-temporal context learning. Zhang K,Zhang L,Liu Q,et al. Computer Vision-ECCV 2014 . 2014
  • [5] Semi-supervised on-line boosting for robust tracking. Grabner H,Leistner C,Bischof H. 10th European Conference on Computer Vision . 2008
  • [6] Visual object tracking using adaptive correlation filters. Bolme D.S,Beveridge J.R,Draper B.A, et al. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2010
  • [7] Real-time Compressive Tracking. Zhang K,Zhang L,Yang M H. Computer Vision-ECCV 2012 . 2012
  • [8] Tracking-Learning-Detection. Zdenek Kalal,Krystian Mikolajczyk,Jiri Matas. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • [9] Robust Object Tracking with Online Multiple Instance Learning. Boris Babenko,Ming-Hsuan Yang,Serge Belongie. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011
  • [10] Robust visual tracking and vehicle classification via sparse representation. Mei, Xue,Ling, Haibin. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011