Finite Degree Holomorphic Covers of Compact Riemann Surfaces

被引:0
|
作者
Jouni PARKKONEN [1 ]
Vesa RUUSKA [2 ]
机构
[1] Department of Mathematics and Statistics,P.O.Box 35 40014 University of Jyvskyl,Finland
[2] Department of Physics,P.O.Box 35,40014 University of Jyvskyl,Finland
基金
芬兰科学院;
关键词
Riemann surfaces; covering maps; quasiconformal maps;
D O I
暂无
中图分类号
O174.51 [单复变数函数几何理论];
学科分类号
摘要
A conjecture of Ehrenpreis states that any two compact Riemann surfaces of genus atleast two have finite degree unbranched holomorphic covers that are arbitrarily close to each other inmoduli space.Here we prove a weaker result where certain branched covers associated with arithmeticRiemann surfaces are allowed,and investigate the connection of our result with the original conjecture.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 50 条