周期传染病模型的基本再生数

被引:7
|
作者
白振国
机构
[1] 西安电子科技大学理学院
关键词
传染病模型; 基本再生数; 谱半径; 季节性;
D O I
暂无
中图分类号
O175.1 [常微分方程];
学科分类号
摘要
本文是对周期传染病模型中基本再生数如何定义的一个简单综述.基于常微分方程(ODE)、时滞微分方程(DDE)、偏微分方程(PDE)、差分方程和脉冲微分方程系统所描述的模型,我们利用积分算子谱半径的方法给出了这些不同类型模型的基本再生数的具体定义.其结果有助于流行病学家们有效地预测具有季节性波动传染病的发展趋势.
引用
收藏
页码:175 / 183
页数:9
相关论文
共 24 条
  • [1] On a new perspective of the basic reproduction number in heterogeneous environments
    Inaba, Hisashi
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (02) : 309 - 348
  • [2] On the biological interpretation of a definition for the parameter R0 in periodic population models
    Bacaer, Nicolas
    Dads, El Hadi Ait
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) : 601 - 621
  • [3] A net reproductive number for periodic matrix models
    Cushing, J. M.
    Ackleh, A. S.
    [J]. JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 166 - 188
  • [4] The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality
    Bacaer, Nicolas
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 64 (03) : 403 - 422
  • [5] Modeling the Effects of Vaccination and Treatment on Pandemic Influenza[J] . Zhilan Feng,Sherry Towers,Yiding Yang.The AAPS Journal . 2011 (3)
  • [6] Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model[J] . S. Towers,K. Vogt Geisse,Y. Zheng,Z. Feng.Journal of Theoretical Biology . 2011
  • [7] Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission
    Gao, Shujing
    Liu, Yujiang
    Nieto, Juan J.
    Andrade, Helena
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (09) : 1855 - 1868
  • [8] The periodic Ross–Macdonald model with diffusion and advection[J] . Yijun Lou,Xiao-Qiang Zhao.Applicable Analysis . 2010 (7)
  • [9] On the Final Size of Epidemics with Seasonality
    Bacaer, Nicolas
    Gomes, M. Gabriela M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (08) : 1954 - 1966
  • [10] Periodic Matrix Population Models: Growth Rate, Basic Reproduction Number, and Entropy[J] . Bulletin of Mathematical Biology . 2009 (7)